THE EIGENSYSTEM OF THE EULER EQUATIONS

AMMAR H. HAKIM

In this document I list the eigensystem of the Euler equations. The formulas are taken from[1], Chapter 3, section 3.1. The Euler equations can be written in conservative form as

$$
\frac{\partial}{\partial t}\left[\begin{array}{c}
\rho \tag{1}\\
\rho u \\
\rho v \\
\rho w \\
E
\end{array}\right]+\frac{\partial}{\partial x}\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
\rho u w \\
(E+p) u
\end{array}\right]=0
$$

where

$$
\begin{equation*}
E=\rho \varepsilon+\frac{1}{2} \rho q^{2} \tag{2}
\end{equation*}
$$

is the total energy and ε is the internal energy of the fluid and $q^{2}=u^{2}+$ $v^{2}+w^{2}$. The pressure is given by an equation of state (EOS) $p=p(\varepsilon, \rho)$. For an ideal gas the EOS is $p=(\gamma-1) \rho \varepsilon$.

The eigenvalues are $\{u-c, u, u, u, u+c\}$. The right eigenvectors of the flux Jacobian are given by

$$
R=\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 1 \tag{3}\\
u-c & 0 & 0 & u & u+c \\
v & 1 & 0 & v & v \\
w & 0 & 1 & w & w \\
h-u c & v & w & h-c^{2} / b & h+u c
\end{array}\right]
$$

here

$$
\begin{align*}
h & =(E+p) / \rho \tag{4}\\
c & =\sqrt{\frac{\partial p}{\partial \rho}+\frac{p}{\rho^{2}} \frac{\partial p}{\partial \varepsilon}} \tag{5}
\end{align*}
$$

is the enthalpy and the sound speed respectively. Also,

$$
\begin{equation*}
b=\frac{1}{\rho} \frac{\partial p}{\partial \varepsilon} \tag{6}
\end{equation*}
$$

Note that for ideal gas EOS we have

$$
\begin{align*}
h & =\frac{c^{2}}{\gamma-1}+\frac{1}{2} q^{2} \tag{7}\\
c & =\sqrt{\frac{\gamma p}{\rho}} \tag{8}
\end{align*}
$$

and $b=\gamma-1$. Hence, in this case the term $h-c^{2} / b$ in Eq. (9) is just $q^{2} / 2$. The left eigenvectors are

$$
L=\frac{b}{2 c^{2}}\left[\begin{array}{ccccc}
\theta+u c / b & -u-c / b & -v & -w & 1 \tag{9}\\
-2 v c^{2} / b & 0 & 2 c^{2} / b & 0 & 0 \\
-2 w c^{2} / b & 0 & 0 & 2 c^{2} / b & 0 \\
2 h-2 q^{2} & 2 u & 2 v & 2 w & -2 \\
\theta-u c / b & -u+c / b & -v & -w & 1
\end{array}\right]
$$

where

$$
\begin{equation*}
\theta=q^{2}-\frac{E}{\rho}+\rho \frac{\partial p / \partial \rho}{\partial p / \partial \varepsilon} \tag{10}
\end{equation*}
$$

which, for an ideal gas EOS reduces to $q^{2} / 2$.
Now consider the problem of splitting a jump vector $\Delta \equiv\left[\delta_{0}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}\right]^{T}$ into coefficients neeeded in computing the Riemann problem. The coefficients are given by $L \Delta$. For an ideal gas law EOS, after some algebra we can show that an efficient way to compute these are

$$
\begin{align*}
& \alpha_{3}=\frac{\gamma-1}{c^{2}}\left[\left(h-q^{2}\right) \delta_{0}+u \delta_{1}+v \delta_{2}+w \delta_{3}-\delta_{4}\right] \tag{11}\\
& \alpha_{1}=-v \delta_{0}+\delta_{2} \tag{12}\\
& \alpha_{2}=-w \delta_{0}+\delta_{3} \tag{13}\\
& \alpha_{4}=\frac{1}{2 c}\left[\delta_{1}+(c-u) \delta_{0}-c \alpha_{3}\right] \tag{14}\\
& \alpha_{0}=\delta_{0}-\alpha_{3}-\alpha_{4} . \tag{15}
\end{align*}
$$

References

[1] Andrei G. Kulikoviskii, Nikolai V. Pogorelov, and Andrei Yu. Semenov. Mathematical Aspects of Numerical Solutions of Hyperbolic Systems. Chapman and Hall/CRC, 2001.

