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1. The eigensystem of the equations written in quasilinear
form

In this document I list the eigensystem of the ten-moment equations.
These equations are derived by taking moments of the Boltzmann equation
and truncating the resulting infinite series of equations by assuming the heat
flux tensor vanishes. In non-conservative form these equations are

∂tn+ n∂juj + uj∂jn = 0 (1)

∂tui +
1

mn
∂jPij + uj∂jui =

q

m
(Ei + εkmiukBm) (2)

∂tPij + Pij∂kuk + ∂ku[iPj]k + uk∂kPij =
q

m
Bmεkm[iPjk] (3)

In these equations square brackets around indices represent the minimal sum
over permutations of free indices within the bracket needed to yield com-
pletely symmetric tensors. Note that there is one such system of equations
for each species in the plasma. Here, q is the species charge, m is the species
mass, n is the number density, uj is the velocity, Pij the pressure tensor and
E and B are the electric and magnetic field respectively. Also ∂t ≡ ∂/∂t
and ∂i ≡ ∂/∂xi.

To determine the eigensystem of the homogeneous part of this system we
first write, in one-dimension, the left-hand side of Eqns. (1)-(3) in the form

∂tv + A∂1v = 0 (4)

where v is the vector of primitive variables and A is the quasilinear coeffi-
cient matrix1. For the ten-moment system we have

v =
[
ρ, u1, u2, u3, P11, P12, P13, P22, P23, P33

]T
(5)

1There is no standard name for this matrix. I choose to call it the quasilinear coefficient
matrix instead of the incorrect term “primitive flux Jacobian”.
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where ρ ≡ mn and

A =



u1 ρ 0 0 0 0 0 0 0 0
0 u1 0 0 1/ρ 0 0 0 0 0
0 0 u1 0 0 1/ρ 0 0 0 0
0 0 0 u1 0 0 1/ρ 0 0 0
0 3P11 0 0 u1 0 0 0 0 0
0 2P12 P11 0 0 u1 0 0 0 0
0 2P13 0 P11 0 0 u1 0 0 0
0 P22 2P12 0 0 0 0 u1 0 0
0 P23 P13 P12 0 0 0 0 u1 0
0 P33 0 2P13 0 0 0 0 0 u1


(6)

The eigensystem of this matrix needs to be determined. It is easiest to use a
computer algebra system for this. I prefer the open source package Maxima
for this. The right-eigenvectors returned by Maxima need to massaged a
little bit to bring them into a clean form. The results are described below.

The eigenvalues of the system are given by

λ1,2 = u1 −
√
P11/ρ (7)

λ3,4 = u1 +
√
P11/ρ (8)

λ5 = u1 −
√

3P11/ρ (9)

λ6 = u1 +
√

3P11/ρ (10)

λ7,8,9,10 = u1 (11)

To maintain hyperbolicity we must hence have ρ > 0 and P11 > 0. In multi-
ple dimensions, in general, the diagonal elements of the pressure tensor must
be positive. When P11 = 0 the system reduces to the cold fluid equations
which is known to be rank deficient and hence not hyperbolic as usually
understood2. Also notice that the eigenvalues do not include the usual fluid
sound-speed cs =

√
5p/3ρ but instead have two different propagation speeds

c1 =
√
P11/ρ and c2 =

√
3P11/ρ. This is because the (neutral) ten-moment

system does not go to the correct limit of Euler equations in the absence of
collisions. In fact, it is collisions that drive the pressure tensor to isotropy.
These collision terms should also be included in the plasma ten-moment sys-
tem. In this case, however, the situation is complicated due to the presence
of multiple species of very different masses which leads to inter-species col-
lision terms that need to be computed carefully. For a two-species plasma,
for example, see the paper by Green[1] in which the relations for relaxation
of momentum and energy are used to derive a simplified collision integral
for use in the Boltzmann equation.

2For hyperbolicity the quasilinear matrix must posses real eigenvalues and a complete
set of linearly independent right eigenvectors. For the cold fluid system we only have a
single eigenvalue (the fluid velocity) and a single eigenvector. This can lead to generalized
solutions like delta shocks.
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The right eigenvectors (column vectors) are given below.

r1,3 =



0
0

∓c1
0
0
P11

0
2P12

P13

0


r2,4 =



0
0
0

∓c1
0
0
P11

0
P12

2P13


(12)

and

r5,6 =



ρP11

∓c2P11

∓c2P12

∓c2P13

3P 2
11

3P11P12

3P11P13

P11P22 + 2P 2
12

P11P23 + 2P12P13

P11P33 + 2P 2
13


(13)

and

r7 =



1
0
0
0
0
0
0
0
0
0


r8 =



0
0
0
0
0
0
0
1
0
0


r9 =



0
0
0
0
0
0
0
0
1
0


r10 =



0
0
0
0
0
0
0
0
0
1


(14)

We can now compute the left eigenvectors (row vectors) by inverting the
matrix with right eigenvectors stored as columns. This ensures the normal-
ization lprk = δpk, where the lp are the left eigenvectors. On performing the
inversion we have

l1,3 =

[
0 ± P12

2c1P11
∓ 1

2c1
0 − P12

2P 2
11

1

2P11
0 0 0 0

]
(15)

l2,4 =

[
0 ± P13

2c1P11
0 ∓ 1

2c1
− P13

2P 2
11

0
1

2P11
0 0 0

]
(16)
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and

l5,6 =

[
0 ∓ 1

2c2P11
0 0

1

6P 2
11

0 0 0 0 0

]
(17)

and

l7 =

[
1 0 0 0 − 1

3c21
0 0 0 0 0

]
(18)

l8 =

[
0 0 0 0

4P 2
12 − P11P22

3P 2
11

−2P12

P11
0 1 0 0

]
(19)

l9 =

[
0 0 0 0

4P12P13 − P11P23

3P 2
11

−P13

P11
−P12

P11
0 1 0

]
(20)

l10 =

[
0 0 0 0

4P 2
13 − P11P33

3P 2
11

0 −2P13

P11
0 0 1

]
(21)

2. The eigensystem of the equations written in conservative
form

In the wave-propagation scheme the quasilinear equations can be updated.
However, the resulting solution will not be conservative. This actually might
not be a problem for the ten-moment system as the system (as written) can
not be put into a homogeneous conservation law form anyway. However,
most often for numerical simulations the eigensystem of the conservation
form of the homogeneous system is needed. This eigensystem is related to
the eigensystem of the quasilinear form derived above. To see this consider
a conservation law

∂tq + ∂1f = 0 (22)

where f = f(q) is a flux function. Now consider an invertible transformation
q = ϕ(v). This transforms the conservation law to

∂tv + (ϕ′)−1 Df ϕ′∂1v = 0 (23)

where ϕ′ is the Jacobian matrix of the transformation and Df ≡ ∂f/∂q is
the flux Jacobian. Comparing this to Eq. (4) we see that the quasilinear
matrix is related to the flux Jacobian by

A = (ϕ′)−1 Df ϕ′ (24)

This clearly shows that the eigenvalues of the flux Jacobian are the same as
those of the quasilinear matrix while the right and left eigenvectors can be
computed using ϕ′rp and lp(ϕ′)−1 respectively.
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For the ten-moment system as written in Eqns. (1)-(3) the required trans-
formation is

q = ϕ(v) =



ρ
ρu1
ρu2
ρu3

ρu1u1 + P11

ρu1u2 + P12

ρu1u3 + P13

ρu2u2 + P22

ρu2u3 + P23

ρu3u3 + P33


(25)

For this transformation we have

ϕ′(v) =



1 0 0 0 0 0 0 0 0 0
u1 ρ 0 0 0 0 0 0 0 0
u2 0 ρ 0 0 0 0 0 0 0
u3 0 0 ρ 0 0 0 0 0 0
u1u1 2ρu1 0 0 1 0 0 0 0 0
u1u2 ρu2 ρu1 0 0 1 0 0 0 0
u1u3 ρu3 0 ρu1 0 0 1 0 0 0
u2u2 0 2ρu2 0 0 0 0 1 0 0
u2u3 0 ρu3 ρu2 0 0 0 0 1 0
u3u3 0 0 2ρu3 0 0 0 0 0 1


(26)

The inverse of the transformation Jacobian is

(ϕ′)−1 =



1 0 0 0 0 0 0 0 0 0
−u1/ρ 1/ρ 0 0 0 0 0 0 0 0
−u2/ρ 0 1/ρ 0 0 0 0 0 0 0
−u3/ρ 0 0 1/ρ 0 0 0 0 0 0
u1u1 −2u1 0 0 1 0 0 0 0 0
u1u2 −u2 −u1 0 0 1 0 0 0 0
u1u3 −u3 0 −u1 0 0 1 0 0 0
u2u2 0 −2u2 0 0 0 0 1 0 0
u2u3 0 −u3 −u2 0 0 0 0 1 0
u3u3 0 0 −2u3 0 0 0 0 0 1


(27)
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