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ear-asymptotic angle dependence of ocean
ptical radiance

mmar H. Hakim, Brian D. Piening, and Norman J. McCormick

The approach of ocean optical radiance to an approximate asymptotic dependence with increasing depth
in spatially uniform waters is numerically examined for a variety of sea surface illumination conditions.
© 2004 Optical Society of America
OCIS codes: 010.0010, 010.4450, 030.5620, 290.4210, 290.7050.
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. Introduction

n deep, spatially uniform waters the radiance tends
ith increasing depth to an asymptotic state that is
zimuthally independent. An example of this phe-
omenon in everyday life occurs when the direction of
he Sun cannot be discerned because sunlight is
ransmitted through an optically thick, cloudy atmo-
phere and the light appears the same in all horizon-
al directions. For light in ocean water, the physical
xplanation for this tendency to an azimuthal inde-
endence is that, because any fluorescence or biolu-
inescence is essentially isotropic, the only way that

he radiance can have an azimuthal dependence is by
eans of the azimuthal dependence of the surface

llumination. Even though each scattering event is
trongly anisotropic in the forward direction, each
cattering is symmetric in a plane normal to the ini-
ial photon direction. Thus, after many scattering
vents have occurred, the collided radiation that is
till present deep beneath the surface tends to not
epend on the angular distribution of the surface
llumination, and any uncollided portion attenuates
xponentially with optical depth until it is only a
mall fraction of the total radiance. Furthermore, in
he limit that the radiance tends with increasing
epth to its asymptotic angular distribution, it is un-
oupled from the air–water interface condition such
hat effects from discontinuity of the index of refrac-
ion at the surface disappear.

The authors are with the Department of Mechanical Engineer-
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Received 2 November 2003; revised manuscript received 27 July
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Azimuthal symmetry does not necessarily mean
hat the radiance has reached an asymptotic angular
istribution, however. Obvious exceptions occur if
he Sun is directly overhead or if the sea surface is
lluminated through an optically thick cloud layer
uch that the radiance already is azimuthally sym-
etric before it enters the water.
As the depth increases in spatially uniform wa-

ers that contain no sources of radiance, apparent
ptical properties �AOPs� tend asymptotically to be-
ome inherent optical properties, as was illustrated,
or example, by Mobley.1 Recently Piening and

cCormick2 examined the tendency of four AOPs of
zimuthally symmetric �or azimuthally integrated�
adiance to approach their constant asymptotic val-
es; specifically, they considered the diffuse atten-
ation coefficient, the irradiance reflectance, the
adiance�irradiance ratio, and the mean cosine of
he light field. The approach of these AOPs to
heir asymptotic shape is important because sev-
ral methods for inferring absorption and scatter-
ng properties of ocean waters have been devised
hat give better results when these AOPs are nearly
symptotic.3–6

It is known that, if there is negligible azimuthal
ngle dependence, then the number of IOPs that can
e inferred in an inverse problem analysis is greatly
educed.7,8 Also, if there is negligible azimuthal an-
le dependence, the computation time is dramatically
educed for any forward radiative transfer problem
ith a computer program �e.g., Hydrolight9� to deter-
ine the radiance.
In this paper we focus on the tendency of the radi-

nce to approach its asymptotic polar and azimuthal
ngular shape. Section 2 contains an explanation of
he tests that were done, and Section 3 contains the

esults of those tests.
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We consider the in-water radiative transfer equa-
ion1

�L��, �, ��

��
� L��, �, �� � � �

0

2	

d�
 �
�1

1

� d�
�̃��
, �
3 �, ��

� L��, �
, �
�,

� � 0, (1)

here L��, �, �� is the radiance at optical depth � for
olar angle  � cos�1 � with respect to � and for
zimuthal angle � with 0 � � � 2	. The inherent
ptical properties � and �̃ are the albedo of single
cattering and the phase function, respectively. All
uantities in Eq. �1� are implicitly a function of wave-
ength. The boundary conditions that we consider
ust above the surface for the radiance entering the
ater are for either a black sky �i � 1� or a diffuse

llumination �i � 2�:

L�0�, �, �� � Fi��, ��, 0 � � � 1, i � 1, 2, (2)

here

F1��, �� � Ed�0
����� � �0,a���� � �0���0,a,

0 � �0,a � 1, (3)

F2��, �� � 	�1Ed�0
��, 0 � � � 1. (4)

or both illumination conditions, L��3 �, �, ��3 0.
hat is, the ocean is assumed to be very deep and to
e illuminated by a solar beam with downward irra-
iance Ed�0�� just above the surface either in direc-
ion ��0,a, �0� or uniformly over all 2	 incoming
irections.
The first set of boundary conditions was selected to
aximize the azimuthal dependence of the in-water

adiance, whereas the second set with isotropic illu-
ination was included to provide a comparison for

he approach of the polar-angle-dependent radiance
o its asymptotic shape.

One can best analyze the radiance for illumination
ondition 1 by separating it into two parts, one for the
ollided radiance and the other for the uncollided
ortion:

L��, �, �� � Lc��, �, �� � Lu��, �, ��. (5)

Fourier expansion of the collided radiance gives10

Lc��, �, �� � �
m�0

M

�2 � �m,0� Lc
m��, ��cos�m�� � �0��,

(6)

here the Fourier components of Lc��, �, �� are

Lc
m��, �� � �1�2	� �

0

2	

Lc��, �, ��cos�m�� � �0��d�,
(7)
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ith �m,n � 1 for m � n and �m,n � 0 otherwise.
quation �6� makes it possible to replace the solution
f the radiative transfer equation for L��, �, �� by
M � 1� independent radiative transfer equations for
c
m��, ��, m � 0–M that depend on only � and �,1,10–12

here m � 0 is the azimuthally symmetric equation.
ach of these transfer equations has a corresponding
et of eigenmodes for its respective eigenvalues.11,12

e denote the slowest spatially decaying eigenmode
or each Fourier component, Lc

m��, ��, by �m��1
m,

�exp�����1
m�. Radiance L��, �, �� tends with in-

reasing � to become proportional to the eigenfunc-
ion �0��1

0, ��, corresponding to the largest �i.e.,
symptotic� eigenvalue �1

0, where �1
0 � 1 for � �

.6,11,12 �Another check on the eigenfunctions is that
m��1

m, �1� � 0 if m � 1, which is consistent with
he requirement that the vertically upward and
ownward radiances be azimuthally symmetric.�

. Approach to an Asymptotic Dependence on
zimuth

. Azimuthal Angle Dependence

e examined with two different metrics the approach
f the radiance to its azimuthally independent shape
or increasing �, i.e., L��, �, �� 3 L��, �� for large �.

ith the azimuthal average difference metric we
sed the ratio of the polar-angle average of the azi-
uthally integrated portion of the downward radi-

nce to the polar-angle average of the downward
adiance:

100 max
���0,2	�

�1 �
Ld���

Ld��, ��� � ��,a���, (8)

here ��,a��� is the azimuthal average percent differ-
nce at depth � and

Ld��� � �
0

1

L��, ��d�, (9)

Ld��, �� � �
0

1

L��, �, ��d�. (10)

or given values of �0 and of single-scattering albedo
, we examined the values of ��,a��� versus � for all �,
� � � 2	. Even before performing any computa-

ions one can recognize that L��, �, �� for the upward
irections �1 � � � 0 naturally will be much more
zimuthally symmetric than L��, �, �� for the down-
ard directions 0 � � � 1, so we focus our attention
rimarily on the downward radiance, which explains
he integration limits in Eqs. �9� and �10�.

Similarly, we examined the dependence on depth of
he maximum percent difference ��,m���, in values of
he azimuthally dependent radiance with

100 1 �
min���0,2	�L��, �0, ��

� � ���, (11)
� max���0,2	�L��, �0, ��� �,m
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he azimuthal maximum difference metric. Because
f the dominance of small-angle scattering for ocean
aters, the peak differences tend to occur for � � �0,
hich are the values that we considered when we
pplied Eq. �11�. In view of the incident illumina-
ion condition of Eq. �3� it is not surprising that the
inimum values of L occur for � � �0 � 	 and the
aximum values are at � � �0 because no surface
ind has been assumed.

. Polar Angle Dependence

ecause L��, �� becomes proportional to �0��1
0,

�exp�����1
0� for large �, we used the polar average

ifference metric, defined by

100 max
����1,1�

�1 �
� 0��1

0, ���g1
���1

0�

L��, ���Ed���
� � ��,a���, (12)

here ��,a��� is the percent difference in polar aver-
ge at depth � and

g1
���1

0� � �
0

1

�� 0��1
0, ��d�, (13)

Ed��� � �
0

1

�L��, ��d�. (14)

or monodirectional illumination with given values
f �0 and single-scattering albedo �, we examined
he values of ��,a��� versus � for all �, �1 � � � 1.

e also used the criterion of Eq. �12� and examined
he approach of the radiance to its asymptotic shape
or the isotropic illumination given by Eq. �4�.

. Numerical Tests

he radiative transfer equation was solved by use of
n analytic discrete-ordinates program written by
akim following a procedure developed by Siewert.13

his discrete-ordinates program utilizes an expan-
ion of collided radiance Lc��, �, �� in the formally
xact functions that satisfy the radiative transfer
quation.11,12 This has the advantage that the nu-
erical discretization of � is done on the explicit

nalytic form of the asymptotic eigenmode �0��1
0, ��.

o use this approach we extended Siewert’s work to
nclude refractive-index effects for the air–water in-
erface by altering the discrete directions across the
nterface in the manner of Tanaka and Nakajima.14

The analytic discrete ordinates algorithm requires
hat the scattering phase function for scattering an-
le � �in radians� be expanded in a Legendre series,
hich we choose to denote as

�̃�cos �� � �
n�0

N

�̃n Pn�cos ��, (15)

here

�̃n � �4	��1�2n � 1� fn, (16)

o �̃�cos �� is normalized by f0 � 1. For the Henyey–

reenstein �HG� phase function,15 fn � f1

n, where f1 n
s the mean cosine of the scattering phase function.
ut to compute the expansion coefficients �̃n for the
etzold phase function16 an analytical representation

�̃�cos �� � exp��
n�0

6

cn�
n�2� (17)

roposed by Haltrin and Mankovsky17 for offshore-
alifornia waters was used, with their regression co-
fficients of c0 � 11.325, c1 � �45.768, c2 � 104.56,
3 � �145.18, c4 � 106.71, c5 � �38.639, and c6 �
.5094. Because of the highly forward-scattering
ature of the phase functions, however, thousands of
xpansion coefficients may be needed for accurately
omputing of light fields. To make the problem com-
utationally feasible we used the delta-L approxima-
ion in which the near-forward-scattering peak is
tripped away by use of a delta function; i.e., the
hase function is rewritten as

�̃�cos �� � 2���1 � cos �� � �1 � �� p�cos ��, (18)

here 0 � � � 1 is an optimally selected number and
�cos �� is a phase function defined as in Eq. �15� but
ith a smaller number of expansion coefficients p̃n �

4	��1�2n � 1�pn. Use of Eq. �18� in the radiative
ransfer equation does not change its form but intro-
uces a scaling of the albedo and the optical depth to
ew albedo and depth values of �
 and �
, respec-
ively, for a radiative transfer equation with phase
unction p�cos ��:

�
 �
��1 � ��

1 � ��
, (19)

�
 � ��1 � ���. (20)

se of the orthogonality relation for the Legendre
olynomials shows that expansion coefficients fn of

˜ �cos �� and coefficients pn of p�cos �� are related by

pn �
fn � �

1 � ��
. (21)

ne way to compute the number � is to set pM � 0,
here M is suitably large. With this choice, which
e used in our computations,

� � fM. (22)

or example, setting M � 1 gives � � f1, which is the
ame as assuming that phase function p�cos �� is
sotropic.

Our analytic discrete coordinates program was
enchmarked to within five significant figures
gainst the results for the Haze-L and Cloud-C1 prob-
ems obtained with two independent programs, one
y Garcia and Siewert18 and the other by Siewert.13

he C1 phase function, which is highly anisotropic,
as 300 expansion coefficients, and we needed more
han 400 discrete ordinates to accurately compute the
adiance. The reason that we chose to use our own
ode is that we were unable to obtain the accuracy

eeded for radiances with the widely used Hydrolight

1 November 2004 � Vol. 43, No. 31 � APPLIED OPTICS 5827
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3 3.13596, and �3

0 3 2.12843. From Fig. 1 it is

F
t
t
f 1

29 0.3067 0.1993 0.1457 0.1128 0.0906 0.0747 0.0629 0.0537

5

rogram.9 Inconsistencies between asymptotic re-
ults obtained from Hydrolight and a traditional dis-
rete ordinate program19 were identified earlier.20

ubsequently, large errors in values of radiances
rom Hydrolight were observed by Chalhoub et al.21

ven though errors in the scalar and planar irradi-
nces were not large.
For the asymptotic radiance tests here, both the
G and the Petzold offshore-California phase func-

ions were used. The latter describes the scattering
hase function for typical case 1 waters, for example.
he HG phase function was selected to give the same
symmetry factor, f1 � 0.870905, as the Petzold
hase function. For the computations performed,
e set M � 250. No changes in the computed radi-
nces were observed when M was increased beyond
his value. The results for the fn coefficients are
iven in Table 1 for the Petzold offshore-California
hase function and are also available at http:��fac-
lty.washington.edu�mccor�ocean_optic_index.html.
Although the radiance at large optical depths be-

omes proportional to �0��1
0, ��exp�����1

0�, the rate
t which the radiance approaches this shape depends
n the separation of the largest few eigenvalues of the

� 0 component. These eigenvalues in turn de-
end on single-scattering albedo � and on the phase
unction. Figure 1 shows the largest three eigenval-
es of the m � 0 component of the transfer equation

s a function of � for the Petzold offshore-California c

828 APPLIED OPTICS � Vol. 43, No. 31 � 1 November 2004
hase function. These eigenvalues were computed
ith reduced phase function p and were transformed
ack by use of the relation � � �
��1 � ���. Not
hown is the behavior as �3 1, for which �1

03 �, �2
0

ig. 1. Largest three eigenvalues for the m � 0 mode of the
ransfer equation as a function of the albedo of single scattering for
he Petzold phase function �continuous curves�. Selected results
or the HG phase function are also shown: crosses, � 0; open
Table 1. First 260 Expansion Coefficients for the Petzold Offshore-California Phase Function for Use in Computing pn from Eqs. �21� and �22�

n fn�0 fn�30 fn�60 fn�90 fn�120 fn�150 fn�180 fn�210 fn�240

0 1 0.3012 0.1970 0.1443 0.1119 0.0900 0.0743 0.0625 0.0534
1 0.8709 0.2960 0.1947 0.1430 0.1111 0.0894 0.0738 0.0622 0.0532
2 0.8146 0.2909 0.1925 0.1417 0.1102 0.0888 0.0734 0.0618 0.0529
3 0.7418 0.2861 0.1903 0.1404 0.1094 0.0882 0.0730 0.0615 0.0526
4 0.6886 0.2814 0.1881 0.1391 0.1085 0.0876 0.0725 0.0612 0.0524
5 0.6394 0.2768 0.1860 0.1379 0.1077 0.0871 0.0721 0.0608 0.0521
6 0.6010 0.2724 0.1840 0.1367 0.1069 0.0865 0.0717 0.0605 0.0519
7 0.5671 0.2682 0.1819 0.1355 0.1061 0.0859 0.0712 0.0602 0.0516
8 0.5395 0.2641 0.1800 0.1343 0.1053 0.0853 0.0708 0.0599 0.0514
9 0.5150 0.2601 0.1780 0.1331 0.1045 0.0848 0.0704 0.0596 0.0511

10 0.4942 0.2562 0.1761 0.1319 0.1037 0.0842 0.0700 0.0592 0.0509
11 0.4755 0.2524 0.1742 0.1308 0.1030 0.0837 0.0696 0.0589 0.0506
12 0.4591 0.2488 0.1724 0.1297 0.1022 0.0831 0.0692 0.0586 0.0504
13 0.4441 0.2452 0.1706 0.1286 0.1015 0.0826 0.0688 0.0583 0.0501
14 0.4307 0.2418 0.1688 0.1275 0.1007 0.0821 0.0684 0.0580 0.0499
15 0.4182 0.2384 0.1671 0.1264 0.1000 0.0816 0.0680 0.0577 0.0496
16 0.4068 0.2352 0.1654 0.1254 0.0993 0.0810 0.0676 0.0574 0.0494
17 0.3961 0.2320 0.1637 0.1243 0.0986 0.0805 0.0672 0.0571 0.0492
18 0.3862 0.2289 0.1621 0.1233 0.0979 0.0800 0.0669 0.0568 0.0489
19 0.3769 0.2259 0.1604 0.1223 0.0972 0.0795 0.0665 0.0565 0.0487
20 0.3681 0.2229 0.1588 0.1213 0.0965 0.0790 0.0661 0.0562
21 0.3599 0.2200 0.1573 0.1203 0.0958 0.0785 0.0657 0.0559
22 0.3521 0.2172 0.1557 0.1193 0.0951 0.0780 0.0654 0.0556
23 0.3446 0.2145 0.1542 0.1183 0.0945 0.0775 0.0650 0.0554
24 0.3376 0.2118 0.1527 0.1174 0.0938 0.0771 0.0646 0.0551
25 0.3308 0.2092 0.1513 0.1164 0.0932 0.0766 0.0643 0.0548
26 0.3244 0.2067 0.1498 0.1155 0.0925 0.0761 0.0639 0.0545
27 0.3182 0.2042 0.1484 0.1146 0.0919 0.0757 0.0636 0.0542
28 0.3123 0.2017 0.1470 0.1137 0.0913 0.0752 0.0632 0.0540
ircles, �2
0; pluses, �3

0.
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lear that these eigenvalues are close together for �
0.3 and are approximately equal to unity. The

mplication of this near degeneracy of eigenvalues
eans that several eigenmodes can contribute to the

adiance for small � values and that the uncollided
adiance can become nonnegligible. The light field
ends to be nearly unmeasurable at those depths
here the radiance tends to become asymptotic, how-

ver. For this reason the subsequent simulations
hat we performed were for two values of the single-
cattering albedo, � � 0.5 and � � 0.9, that span the
ange of values that are usually encountered in ocean
aters.
The simulations for the metrics of Eqs. �8�, �11�,

nd �12� were performed with three values of solar
eam incident polar angle:  � 30°, 45°, 60°. An
ndex of refraction of n � 1.34 was used for the air–
ater interface, but the asymptotic results reported
ere are virtually the same as those for which Fresnel
eflection and refraction effects have not been ac-
ounted for because of the large optical depths where
he asymptotic distribution is approached.

Figure 1 also shows that the largest eigenvalue of
he azimuthally symmetric transfer equation �m � 0�
or the selected HG phase function is nearly equal to
hat for the Petzold phase function. However, the
wo next higher eigenvalues are considerably smaller
han the corresponding eigenvalues for the Petzold
hase function; hence the HG eigenmodes decrease
ore rapidly with depth. This result indicates that

he light field calculated with the HG phase function
ill achieve its asymptotic values faster, a result that
e confirmed in subsequent computations.
Figure 2 shows the largest eigenvalues �1

m for the
� 0, 1, 2 components of the transfer equation as a

unction of albedo of single scattering. These values
ndicate that every azimuthally dependent eigen-

ode of the radiance that is caused by the surface

ig. 2. Largest eigenvalues for the m � 0, 1, 2 modes of the
ransfer equation as a function of the albedo of single scattering for
he Petzold phase function.
ncident illumination will persist to large depths. d
. Azimuthal Angle Dependence

igure 3 shows the average difference metric of Eq.
8� for the HG phase function as a function of optical
epth for selected incident beam angles and albedoes
f single scattering. The figure shows a trend that is
ommon to all the results obtained: For � � 0.9 the
adiance approaches its asymptotic value faster than
or � � 0.5. This is so because the separation be-
ween �1

0 and �1
1 is greater for larger �, as shown in

ig. 2. It is also clear that for � � 0.9 the radiance
s azimuthally symmetric to within 1% for � � 25,
hereas for � � 0.5 this occurs for � � 40. These

esults do not depend strongly on the incident beam
ngle.
Figure 4 illustrates the azimuthal maximum dif-

erence metric of Eq. �11� as a function of optical

ig. 3. Azimuthal average percent difference metric of Eq. �8� as
function of optical depth for the HG phase function. Results
ith incident beam angle  � 60°, solid curves;  � 45°, dashed

urves;  � 30°, dashed–dotted curves.

ig. 4. Same as Fig. 3 but for the azimuthal maximum percent

ifference metric of Eq. �11�.

1 November 2004 � Vol. 43, No. 31 � APPLIED OPTICS 5829
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40 8.5 6.6 4.8 0.5 0.5 0.4
40 2.2 1.2 1.1 0.01 0.06 0.1

5

epth. For � � 0.9 and for all incident beam angles
hat we considered, the radiance is also azimuthally
ymmetric to within �1% for � � 25 for the maximum
ifference metric. The results in Figs. 3 and 4 are
uite similar, except that in Fig. 4 the maximum
ifference metric shows a greater dependence on the
llumination angle.

Table 2 shows the results for the azimuthal aver-
ge difference metric for the Petzold offshore-
alifornia phase function. Comparison of these
esults with those obtained with the HG phase func-
ion in Fig. 3 shows that the light field calculated by
se of the Petzold phase function becomes azimuth-
lly symmetric at larger optical depths.

. Polar Angle Dependence

igure 5 shows the average percent difference metric
f Eq. �12� for the HG phase function as a function of
ptical depth. It can be seen that, except for � � 0.9
nd  � 60°, the radiance approaches its asymptotic
olar angle dependence faster for diffuse illumination
han for beam illumination. Furthermore, compar-
son of these results with those obtained from the two
zimuthal difference metrics shows that the radiance

ig. 5. Polar average percent difference metric of Eq. �12� as a
unction of optical depth for the HG phase function. Results with
ncident beam angle  � 60°, solid curves;  � 45°, dashed curves;

� 30°, dashed–dotted curves.

830 APPLIED OPTICS � Vol. 43, No. 31 � 1 November 2004
pproaches its asymptotic polar-angle dependence
uch faster than it approaches its azimuthally sym-
etric shape, even though each scattering event is

ymmetric in the local azimuthal direction about a
hoton’s precollision direction. This is so because of
he persistence of the asymptotic eigenmodes for the
zimuthal components that are excited with monodi-
ectional surface illumination, as shown in Fig. 2.
able 3 lists the results with this metric for the Pet-
old phase function.

. Comments

he nonasymptotic dependence of the radiance will
ecome more important for applied ocean optics ap-
lications after radiance measurements become rou-
inely made. At present, with typical detectors that
easure only a scalar irradiance, a planar irradiance,

r the vertically upward radiance, the azimuthal de-
endence of the radiance is lost. Thus it is sufficient
o know just the asymptotic approach of integral
uantities such as the irradiance ratio that were
tudied previously,2 because they approach their as-
mptotic shapes much more rapidly than does the
adiance.

ppendix A. Air–Water Interface Condition

he ocean surface was assumed to be flat �i.e., no
ind�, and wave focusing effects were ignored22 to
llow the illumination beneath the surface to be
reated with classic Fresnel transmission and reflec-
ion techniques. The air–water interface condition
eneath the surface is

L�0�, �, �� � �
0

2	

d�
 �
0

1

d�
L�0�, ��
, �
�

� Rww��, �
, �, �
� � �
0

2	

d�


� �
0

1

d�
L�0�, �
, �
�

� Taw��, �
, �, �
�, 0 � � � 1,
Table 2. Azimuthal Average Percent Difference Metric of Eq. �8� for
Selected Optical Depths for the Petzold Phase Function with Incident

Beam Directions of 30°, 45°, and 60°

�

� � 0.5 � � 0.9

30° 45° 60° 30° 45° 60°

5 90.8 91.4 87.1 77.3 78.1 71.3
10 79.9 75.7 25.9 44.9 44.6 36.4
20 44.5 35.3 11.3 11.0 10.7 17.7
30 19.8 15.4 7.4 2.5 2.3 1.9
Table 3. Polar Average Percent Difference Metric of Eq. �12� for
Selected Optical Depths for the Petzold Phase Function with Incident

Beam Directions of 30°, 45°, and 60°

�

� � 0.5 � � 0.9

30° 45° 60° 30° 45° 60°

15 40.2 35.6 32.2 3.5 3.0 6.2
20 12.9 10.5 8.5 1.3 0.9 1.5
30 5.2 5.1 3.4 0.5 0.2 0.8
(A1)
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here, for a flat surface,1,14,23

ww��, �
, �, �
� � rww������ � �
���� � �
�,

� � �1 � 1�n2�1�2, (A2)

� ��� � �
���� � �
�,

� � �1 � 1�n2�1�2, (A3)

Taw��, �
, �, �
� � n2taw� g������ g���

� �
���� � �
�, (A4)

ith

rww��� �
1
2 ��� � ng���

� � ng����
2

� �n� � g���

n� � g����
2	 , (A5)

taw��� � 2n�f ����� 1
� � nf ����

2

� � 1
n� � f ����

2	 ,

(A6)

f ��� � �1 � �1 � �2��n2�1�2, (A7)

g��� � �1 � n2�1 � �2��1�2. (A8)
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