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Outline: Present scheme for a class of fluid and kinetic
problems

Long term goal: Accurate and stable schemes fluid/kinetic
turbulence simulations of plasmas.

I Present discontinuous/continuous Galerkin schemes for
solution of a class of fluid and kinetic problems in plasmas.

I Discuss use on non-polynomial basis functions to optimize
capturing known physical features.

I Outline some subtle issues in discretization of second-order
derivatives operators using various DG approaches.
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Significant prior work exists on Vlasov-Poisson,
Vlasov-Maxwell

A lot of work is from Institute of Fusion Studies (IFS) and ICES studies
here in U. Texas. See series of papers by Cheng, Morrison, Gamba and
co-workers

I Y. Cheng, I. M. Gamba, F. Li, and P. J. Morrison, “Discontinuous
Galerkin Methods for the Vlasov-Maxwell Equations,” submitted
(2013).

I Y. Cheng, I. M. Gamba, and P. J. Morrison, “Study of Conservation
and Recurrence of Runge-Kutta Discontinuous Galerkin Schemes for
Vlasov-Poisson Systems,” Journal of Scientific Computing (2012)

I R. E. Heath, I. M. Gamba, P. J. Morrison, and C. Michler, “A
Discontinuous Galerkin Method for the Vlasov-Poisson System,”
Journal of Computational Physics 231, 11401174 (2012).

Other e↵orts by C.W. Shu (Brown), J. Rossmanith (Iowa State), David
Seal (Michigan State) etc.
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A basic model of a class of problems in plasma physics is
nonlinear advection in phase space

@f

@t
+r · (↵f) = 0.

Here f(z1, z2, . . . , t) is a scalar “distribution function” and
↵ = (↵1,↵2, . . .) is advection velocity vector in phase space.
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These models can be derived from a Hamiltonian and a
Poisson Bracket structure

@f

@t
+ {f,H} = 0

where H(z1, z2) is the Hamiltonian and canonical Poisson bracket
is

{g, h} ⌘ @g

@z1
@h

@z2
� @g

@z2
@h

@z1
.

Defining phase-space velocity ↵
i

= {zi, H} leads to phase-space

conservation form

@f

@t
+r · (↵f) = 0.
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Example: Incompressible Euler equations in two dimensions
serves as a prototype model for a class of turbulence fluid
problems

Incompressible 2D Euler equations written in the stream-function
(�) vorticity (⇣) formulation. Here the Hamiltonian is simply

H(x, y) = �(x, y)

Advection speed is u
x

= {x,H} and u
y

= {y, h} or u = r�⇥ e
z

@⇣

@t
+r · (u⇣) = 0

The potential is determined from

r2� = �⇣.
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Example: Vlasov equation for electrostatic plasmas

The Vlasov-Poisson system has the Hamiltonian

H(x, v) =
1

2
mv2 +

q

m
�(x)

where q is species charge and m is species mass and v is velocity.
Poisson bracket is noncanonical

{g, h} =
1

m

✓
@g

@x

@h

@x
� @g

@v

@h

@x

◆

With this ẋ = v and v̇ = �q/m@�/@x leading to

@f

@t
+ v

@f

@x
� q

m

@�

@x

@f

@v
= 0
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Example: For Valsov equation two methods to determine
potential

For non-neutral plasmas solve a Poission equation

@2�

@x2
= �⇢c

✏0

where

⇢
c

= |e|
✓
Zn

io

(x)�
Z 1

�1
f(x, v, t)dv

◆

OR, For a quasi-neutral plasma in certain limits

Z 1

�1
f(x, v, t)dv = n

eo

✓
1 +

|e|�
T
e

◆
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It is important to preserve quadratic invariants of these
systems

One can show that
Z

H
@f

@t
dZ = 0

Z
f
@f

@t
dZ = 0

In deriving these one can use the identity ↵ ·rH = 0.
Many other invariants might exist, some of which may be
important to conserve. Example: momentum in electrostatic
Vlasov equations.
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Example: For incompressible Euler these are called energy
and enstrophy

The energy is defined as

@

@t

Z

K

1

2
|r�|2d⌦ = 0

and enstrophy is defined as

@

@t

Z

K

1

2
⇣2d⌦ = 0.
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Often di↵usive processes need to be included

Di↵usion (from vicous e↵ects or collisions) might be needed. For
example, the collisional Vlasov equation in some approximation is

@f

@t
+ v

@f

@x
� q

m

@�

@x

@f

@v
=

@

@v

✓
⌫(v � u)f + ⌫v2

t

@f

@v

◆

where ⌫ is a collision frequency.
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In summary: we need to descretize advection equation
coupled to elliptic equation

Question
Can one develop accurate and stable schemes that conserve invariants,
maintain positivity and use as few grid points as possible?

Proposed Answer
Explore high-order hybrid discontinuous/continuous Galerkin
finite-element schemes and a proper choice of velocity space basis
functions.
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A DG scheme is used to discretize phase-space advection
equation

To discretize the equations introduce a mesh K
j

of the domain K.
Then the discrete problem is stated as: find ⇣

h

in the space of
discontinuous piecewise polynomials such that for all basis
functions w we have
Z

Kj

w
@⇣

h

@t
d⌦+

Z

@Kj

w�n ·↵
h

⇣̂
h

dS �
Z

Kj

rw ·↵
h

⇣
h

d⌦ = 0.

Here ⇣̂
h

= ⇣̂(⇣+
h

, ⇣�
h

) is the consistent numerical flux on @K
j

.
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A continuous finite element scheme is used to discretize
Poisson equation

To discretize the Poisson equation the problem is stated as: find
�
h

in the space of continuous piecewise polynomials such that for
all basis functions  we have

Z

K

 r2�
h

d⌦ = �
Z

K

 ⇣
h

d⌦

Questions
How to pick basis functions for discontinuous and continuous
spaces? We also have not specified numerical fluxes to use. How
to pick them? Do they e↵ect invariants?
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Only recently conditions for conservation of discrete energy
and enstrophy were discovered

Energy Conservation
Liu and Shu (2000) have shown that discrete energy is conserved if space
spanned by potential basis functions are a continuous subset of the space

spanned by the vorticity basis functions.

Enstrophy Conservation
Enstrophy is conserved only if central fluxes are used. With upwind
fluxes, enstrophy decays and hence the scheme is stable in the L2 norm.

DG with central fluxes like high-order generalization of the well-known
Arakawa schemes, widely used in climate modeling and recently also in
plasma physics.

A. H. Hakim, G. W. Hammett, Eric Shi: Fluid and Kinetic Simulations of Plasmas http://www.ammar-hakim.org/sj



However, conservation needs Hamiltonian (fields) to be
continuous

Look at the a quasi-neutral plasma (or parallel dynamics in
gyrokinetics)

Z 1

�1
f(x, v, t)dv = n

eo

✓
1 +

|e|�
T
e

◆

This can not be true point-wise, but must be enforced only in a
weak-sense.
Problem: This leads to a global solve to determine �(x), even
though the point-wise expression is local. Is there a way to
conserve energy even in this case?
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Summary of hybrid DG/CG schemes for Hamiltonian
systems

I With proper choice of function spaces and a central flux, both
quadratic invariants are exactly conserved by the semi-discrete
scheme.

I With upwind fluxes (preferred choice) energy is still conserved,
and the scheme is stable in the L2 norm of the solution.

I For Vlasov-Poisson system there are small errors in
momentum conservation even on a coarse velocity grid, and
decrease rapidly with spatial resolution.

A. H. Hakim, G. W. Hammett, Eric Shi: Fluid and Kinetic Simulations of Plasmas http://www.ammar-hakim.org/sj



Simulation journal with results is maintained at
http://www.ammar-hakim.org/sj

Results are presented for each of the
equation systems described above.

I Incompressible Euler equations

I Hasegawa-Wakatani equations

I Vlasov-Poisson equations

Figure: [Movie] Swirling flow problem. The
initial Gaussian pulses distort strongly but
regain their shapes after a period of
1.5 seconds.
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Initial studies of Hasegawa-Wakatani drift-wave turbulence
are carried out

Figure: [Movie] Number density from Hasegawa-Wakatani drift-wave turbulence
simulations with adiabacity parameter D = 0.1.
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Modified Hasegawa-Wakatani equations are used to study
zonal flow formation

Figure: [Movie] Number density from Hasegawa-Wakatani drift-wave turbulence
simulations with adiabacity parameter D = 0.1 with (left) and without (right) zonal
flow modification.
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How to handle second-order derivatives with DG?

Numerical Methods 101: How to discretize

g(x) =
d2f

dx2

Simplest finite di↵erence scheme

g
j

=
1

�x2
(T � 2 + T�1)f

j

The shift operators are used

T (j) = f
j+1

T�1u(j) = f
j�1.
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A whole zoo of schemes have been developed to handle
such terms in DG

But: Are they consistent?
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What is consistency?
Write the expansion in a cell using Taylor series basis functions
centered around x = x

j

f
jh

(x) =
NX

n=0

f
(n)
j

(x� x
j

)n/n!

Given a function f(x), we call a discrete representation f
jh

consistent if

lim
�x!0

f
(n)
j

=
dnf

dxn

����
xj

.

For example, the standard Galerkin procedure of minimization of
the error in each cell,

R
Ij

⇥
f(x)� f

jh

(x)
⇤2
dx, leads to a consistent

representation.
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What is consistency?
Consistency for operators. Consider

g(x) = f
xx

(x) (1)

Given a domain I 2 [a, b] divided into uniform cells I
j

g(x) = f
xx

(x) ⇡ g
jh

(x) =
NX

n=0

gn
j

P
n

(⌘
j

(x)) (2)

in each cell I
j

. We define a discretization to be consistent in the

mean as follows

Definition (Consistency in the mean)

A discrete DG representation, g
jh

(x), of f
xx

said to be consistent

in the mean, if

lim
�x!0

g0
j

= f
xx

|
xj .
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What is consistency?

Consistency in the mean is required if the discrete operator is to be
represented correctly. But what about other terms in expansion?

We define a discretization to be fully consistent as follows

Definition (Full consistency)

A discrete DG representation, g
jh

(x), of f
xx

said to be fully

consistent, if

lim
�x!0

dng
jh

dxn
=

dnf
xx

dxn

����
xj

for all n = 0, . . . , N .
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A whole zoo of schemes have been developed to handle
such terms in DG

Example: Local DG schemes. Rewrite the system as system of first
order equations

@w

@x
+ f =0,

@g

@x
+ w = 0

For piecewise linear basis functions

u
h

(x, t) = u0 +
x� x

j

�x/2
u1
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A whole zoo of schemes have been developed to handle
such terms in DG

Claim
Many popular DG schemes for such terms are not fully consistent.
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Example: Local DG scheme for piece-wise linear basis
functions

Figure: Derivatives of sin(x) computed using LDG scheme with 16 cells (left) and 32
cells (right). Notice slopes are completely mispredicted, showing scheme is
inconsistent.
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Example: Local DG scheme for piece-wise linear basis
functions

For piecewise linear basis functions we can write update formula as

✓
g0
g1

◆
=

1

�x2

✓
4T�1 � 8 + 4T 2T�1 + 2� 4T

�12T�1 + 6 + 6T �6T�1 � 24� 6T

◆✓
f0
f1

◆

General procedure to check consistency: perform Taylor series
expansion and plug into above expression and take limit as �x ! 0
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Example: Local DG scheme for piece-wise linear basis
functions

Taylor series analysis, confirmed numerically, shows that

✓
g0
g1

◆
=

✓
f
xx

+�x(. . .)
�6f

xx

/�x+�x(. . .)

◆

Notice: not only the slopes are incorrect, but they blow up as
�x ! 0!
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Example: Local DG scheme for piece-wise linear basis
functions

Taylor series analysis, confirmed numerically, shows that

✓
g0
g1

◆
=

✓
f
xx

+�x(. . .)
�6f

xx

/�x+�x(. . .)

◆

Notice: not only the slopes are incorrect, but they blow up as
�x ! 0!
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Example: What if use a symmetric form of local DG
scheme?

For piecewise linear basis functions we can write update formula as

✓
g0
g1

◆
=

1

�x2

✓
4T�1 � 8 + 4T 3T�1 � 3T
�9T�1 + 9T �6T�1 � 24� 6T

◆
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Example: What if use a symmetric form of local DG
scheme? Also inconsistent.

Taylor series analysis, confirmed numerically, shows that

✓
g0
g1

◆
=

✓
f
xx

+�x(. . .)
3f

xxx

/5 +�x(. . .)

◆

Notice: slopes are incorrect.
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Many other popular schemes, including popular pentalty
methods are inconsistent

A philosophical problem: we are trying to use ideas from
traditional FEM toolbox to construct the discrete operators.

Instead, lets use ideas from finite volume toolbox, in particular the
idea of recovery widely used in finite-volume Navier-Stokes solvers.
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Basic idea: recover a continous solution in two cells
sharing edge (van Leer AIAA 2005, Huynh AIAA 2009)

Let R(⇣), ⇣ = x
j�1/2 � x 2 [��x,�x], be a reconstructed

poynomial that extends across two cells and defined as

R(⇣) = f0 + ⇣f 0 +
1

2
⇣2f 00 + . . .

over ⇣ = x
j�1/2 � x 2 [��x,�x].

Determine R(⇣) by L2 minimization over each of the neigboring
cells

Z

Ij�1

vRdx =

Z

Ij�1

vfdx

Z

Ij

vRdx =

Z

Ij

vfdx

for all v(x) being the basis functions.
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Basic idea: recover a continous solution in two cells
sharing edge

For piecewise linear basis function this leads to

✓
g0
g1

◆
=

1

4�x2

✓
9T � 18 + 9T�1 �5T + 5T�1

15T � 15T�1 �7T � 46� 7T�1

◆
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Basic idea: recover a continuous solution in two cells
sharing edge

Taylor series analysis, confirmed numerically, shows that

✓
g0
g1

◆
=

✓
f
xx

+�x(. . .)
f
xxx

+�x(. . .)

◆

Notice: fully consistent scheme!

Lesson
The fact that the solution is discontinous is actually just a cartoon
or reality. Advection equations do not mind these discontinuties,
but di↵usion operators do. So for the latter use recovery and for
the former upwinding. Upwinding does not make sense for
di↵usion.
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Conclusions: Our tests confirm that DG algorithms are
promising for kinetic problems

I A discontinuous Galerkin scheme to solve a general class of
Hamiltonian field equations is presented.

I The Poisson equation is discretized using continuous basis
functions.

I With proper choice of basis functions energy is conserved.

I With central fluxes enstrophy is conserved. With upwind
fluxes the scheme is L2 stable.

I Momentum conservation has small errors but is independent
of velocity space resolution and converges rapidly with spatial
resolution.
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