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We propose and test an inverse ocean optics procedure with numerically simulated data for the deter-
mination of inherent optical properties using in-water radiance measurements. If data are available at
only one depth within a deep homogeneous water layer, then the single-scattering albedo and the single
parameter that characterizes the Henyey–Greenstein phase function can be estimated. If data are
available at two depths, then these two parameters can be determined along with the optical thickness
so that the absorption and scattering coefficients, and also the backscattering coefficient, can be esti-
mated. With a knowledge of these parameters, the albedo and Lambertian fraction of reflected radiance
of the bottom can be determined if measurements are made close to the bottom. A simplified method for
determining the optical properties of the water also is developed for only three irradiance-type measure-
ments if the radiance is approximately in the asymptotic regime. © 2003 Optical Society of America

OCIS codes: 010.4450, 030.5620, 100.3190, 160.4760, 290.1350, 290.3200.
1. Introduction

The estimation of the inherent optical properties
�IOPs� of ocean waters from apparent optical proper-
ties is a key step in the characterization of the pri-
mary productivity of ocean waters.1 Knowledge of
the absorption and backscattering coefficients, a and
bb, of natural waters can be used to determine the
water constituents and abundances if measurements
are made at multiple wavelengths. Although these
two properties can be estimated from remote sensing
measurements of ocean color, in situ algorithms also
are of value for validation purposes.2–6 Although
there are instruments with which to determine the
attenuation of light from a source passing directly
through a water sample, we choose to use a procedure
that utilizes the natural light within the water col-
umn. With this approach one could use an iterative
approach and repetitively solve the radiative transfer
equation �RTE� while searching to minimize a cost
�typically a least-squares� function when determining
optical properties.2,4,6 However, in this paper we
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computationally explore the potential of an analytic
formulation in which measured radiance data are
used without repetitive solutions of the RTE. Ear-
lier research of this type has relied on use of upward
and downward plane irradiance detectors,3 or on use
of downward plane irradiance measurements and ei-
ther upward plane irradiance or vertically upward
radiance measurements.5

Our procedure is one in which we must assume the
validity of the one-parameter Henyey–Greenstein
�HG� scattering phase function model7 to minimize
the number of unknowns that describe the scattering.
Although this phase function does not perfectly
match the particle phase function typically used to
model case 1 open waters,1,8 the exact shape of the
phase function is not as important as the correct
value of the backscattering fraction.9 The HG model
also has been used by Chalhoub and Campos Velho6

who restricted their attention to estimating the
single-scattering albedo and the HG parameter from
plane irradiance and also scalar irradiance measure-
ments, which are more difficult to make than the
remote sensing reflectance measurements relied on
by Leathers et al.5

The general method proposed here requires that
radiance measurements in multiple directions be
made. Radiance measurements are difficult to
make in a water column, admittedly, although pro-
totype instruments have been developed by Voss and
co-workers.10–13 Thus, although our approach has
the potential to obtain more parameters that charac-
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terize the water than other procedures,5,6 we must
admit that without a good set of experimental data
we can only numerically predict the possible perfor-
mance of our procedure when used in actual experi-
ments.

With an appropriate set of radiance data that is
symmetric with respect to the azimuthal angle, or
has been averaged about that angle, we are proposing
our procedure for two possible applications. If the
water column is deep and measurements are being
made at only one depth, then we can determine the
single-scattering albedo � and the single parameter g
that characterizes the HG phase function. If radi-
ance measurements are available at two known
depths in the water, then the optical thickness ��
between the two positions also can be estimated; from
this the beam attenuation coefficient c � a � b can be
determined, where a is the absorption coefficient and
b is the scattering coefficient. The values of � � b�c
and c then give a and b, and then b and g give the
backscattering coefficient bb.

After the values of � and g have been obtained, the
bottom albedo � and Lambertian fraction 	 corre-
sponding to a combined Lambertian–specular reflec-
tion model can be obtained if data from one of the two
�or additional� radiance measurements are from close
to the bottom. Our proposed method for determin-
ing � differs from one that relies on the assumption
that the radiance is approximately asymptotic near
the bottom.14

Siewert15 has used a portion of this procedure to
make preliminary tests of the equations for determin-
ing �, g, and �� in simple test problems in which he
assumed the HG phase function for all his tests.
Here we test the procedure with calculations from
Hydrolight8 that simulate open ocean waters and de-
velop a procedure to also determine a, bb, �, and 	.

In Sections 2 and 3 we test our procedure with
radiance measurements. Then in Section 4 we de-
velop an approximate method with which to deter-
mine � and g. The beauty of the approximate
method is that data from only three irradiance-type
measurements are needed: the scalar irradiance
and planar irradiance and a third irradiance mea-
sured by Doss and Wells.16 But this simplified ap-
proach does come with the penalty that the results
are not as accurate as those from radiance measure-
ments when data are taken near the surface. Nu-
merical results with the approximate method are
obtained in Section 5, followed by a discussion of all
the results in Section 6.

2. General Equations

We are interested in the azimuthally averaged radi-
ance L�z, 
� �in units of W m�2 sr�1 nm�1� that
satisfies the integrodifferential RTE1:


�L� z, 
��� z � cL� z, 
�

� b 
�1

1

�̃�
, 
�� L� z, 
��d
�, 0 � z � z*, (1)

where �̃ is the scattering phase function normalized
such that �1

1 �̃�
, 1�d
 � 1, 
 is the cosine of the
polar angle with respect to the downward depth z in
meters, and z* is the depth of the water column. All
quantities in Eq. �1� are implicitly a function of a
single wavelength. The backscattering coefficient
bb is related to b by

bb

b
� 

�1

0

�̃�
, 1�d
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The scattering phase function in Eq. �1� can be ex-
panded in Legendre polynomials, yielding

�̃�
, 
�� �
1
2 �

n�0

N

�2n � 1� fn Pn�
� Pn�
��, f0 � 1,

(3)

where fn are the expansion coefficients, Pn�
� are the
Legendre polynomials, and N is the assumed maxi-
mum degree of scattering anisotropy. The parame-
ter f1 � g is the asymmetry factor for a single-
scattering event. For the HG model, fn � gn and, in
principle, N 3 �. Combining Eqs. �1� and �3� and
converting to distances measured in optical depths �,
we obtain
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�

��
� L��, 
� �

�
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�

�2n � 1� gnPn�
�

� 
�1

1

Pn�
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where �� is the optical depth of the water column.

A. Determination of the Albedo and Mean Cosine of
Scattering

Two general inverse equations were developed to es-
timate � and the fn coefficients from azimuthally
dependent radiance measurements. With the spe-
cializing assumption of an azimuthally symmetric or
azimuthally integrated radiance, the two equations
to estimate � and g for the HG phase functions by use
of measured radiances at two arbitrary depths � � �1
and �2, 0 � �1 � �2 � �� are17

� �
n�0

�

��1�n�2n � 1� gn��En��2��
2 � En��1��

2�

� 4�S��2� � S��1��, (5)

� �
n�0

�

��1�n�2n � 1� g̃n��Ẽn��2��
2 � �Ẽn��1��

2�

� 4�S̃��2� � S̃��1��, (6)
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where

En��� � 
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�d
, (7)
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�d
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1
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, (9)

S̃��� � 
0

1


2L��, 
� L��, �
�d
, (10)

g̃n � gn��1 � �gn�. (11)

The first step of our procedure is to iteratively solve
nonlinear Eqs. �5� and �6� to determine g and �.
Radiance measurements at two depths �1 and �2 are
required unless it is assumed that the water is so
deep that L���, 
� � 0 so that measurements at only
�1 are needed. It should be noted that, if �1 occurs at
an air–water interface, Eqs. �5� and �6� do not account
for the index of refraction mismatch, which means
that the estimated � and g are more subject to errors
if used with radiances near the surface. This is in-
vestigated in Section 3.

One can expand the radiance in the complete set of
Legendre polynomials as

L��, 
� � 2�1 �
n�0

�

�2n � 1� En��� Pn�
�. (12)

Use of this expansion in Eq. �8�, followed by use of the
Legendre polynomial orthogonality relation after
converting the integral over �0, 1� to ��1, 1�, we ob-
tain

S��� � �
n�0

�

��1�n�2n � 1� En
2���, (13)

so Eq. �5� for the HG phase function can be written in
a more succinct form:

�
n�0

�

��1�n�2n � 1��1 � �gn���En��2��
2

� En��1��
2� � 0. (14)

A similar analysis to evaluate S̃���, in which the Leg-
endre polynomial recursion must be used, yields

S̃��� � ��
n�0

�

��1�n�2n � 1�Ẽn
2���, (15)

so a shorter form for Eq. �6� for the HG phase function
follows after use of Eq. �11�:

�
n�0

�

��1�n�2n � 1��1 � �gn��1

� ��Ẽn��2��
2 � �Ẽn��1��

2� � 0. (16)

B. Determination of the Absorption and Scattering
Coefficients

To determine a, b, and bb, values of � and g are
needed from measurements of L��, 
� at two depths.
This is done when we use Siewert’s procedure to es-
timate c from15

c � ��2 � �1��� z2 � z1�. (17)

He obtained the set of equations

�� � �2 � �1 � �j ln�M��1, �j��M��2, �j��,

j � 1 to J, (18)

any one of which can be used to determine ��. Here

M��, �j� � 
�1

1


���j, 
� L��, 
�d
, (19)

���j, 
� �
��j

2 �
n�0

�

�2n � 1� gn gn��j� Pn�
�

�j � 

, (20)

where the eigenvalues of the RTE can be computed as
the roots �j � ��1, 1�, j � 1 to J, of the equation

�

2 �
n�0

�


�1

1

�2n � 1� gn gn�
� Pn�
�

� � 

d
 � 1 � 0. (21)

The polynomials18 gn��� can be defined by

gn��� � 
�1

1

Pn�
����, 
�d
 (22)

and can be computed with the recursion relation

�2n � 1��1 � �gn��gn��� � �n � 1� gn�1���

� ngn�1��� (23)

with starting values g0��� � 1 and g1��� � �1 � ���.
In practice it is best to use the largest eigenvalue in
Eq. �18�.

Once the beam attenuation coefficient c has been
determined from Eqs. �17� and �18�, then, with the
value of � already estimated, the absorption and
scattering coefficients follow from

a � �1 � ��c, (24)

b � �c. (25)

C. Determination of the Backscattering Coefficient

To compute bb�b of Eq. �2� from the estimated values
of �, b, and g, we use an equation from van de Hulst19

or from Mobley et al.9 for the HG phase function:

bb

b
�

1 � g
2g � 1 � g

�1 � g�1�2 � 1� . (26)
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D. Determination of the Bottom Reflectance

We assume that the bottom reflects radiance with
albedo � according to the specular–diffuse boundary
condition:

L���, �
� � �� �1 � 	� L��*, 
� � 2	

� 
0

1


�L��*, 
��d
�� , 0 � 
 � 1,

(27)

where 	 is the fraction of the reflected radiance that
is Lambertian. The data for L��2, 
� in Eqs. �5� and
�6� now are assumed to be from �2 � �� so that Eq. �27�
can be used. �In practice, measurements at a third,
independent depth, �3 � �2 and �3 � ��, make the
results better.� Use of Eq. �27� in Eqs. �7�–�11� yields

En��2� � ��1�n���1 � 	� En
�h���2� � 2�	�n E1

�h���2��

� En
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1
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��2d
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�h���2� � 2�	�̃nẼ1

�h���2��

� Ẽn
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2
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where the half-range moments are

En
�h���2� � 
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1
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, (33)

�n � 
0

1

Pn�
�d
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�̃n � 
0

1


Pn�
�d
. (35)

Subsequent use of Eqs. �28� and �29� in Eq. �5� and
use of Eqs. �30� and �31� in Eq. �6� yield a pair of
equations for � and 	 that can be solved to determine
these parameters. Only Eq. �5� or �6� is needed if
there is no specular reflection.

3. Numerical Tests with General Equations

We test the procedure with numerically simulated
data generated from Hydrolight8 to determine g and

� with measurements at one depth and two depths.
In the latter case we also can determine �� from
which we obtain a, b, and bb. If measurements are
made at a third depth close to the bottom, then we
can also estimate � and 	.

We initially test the effects of the number of Hy-
drolight quads used in the polar angle measurement.
This is done both with the idealized case of no index
of refraction mismatch at the surface and no wind
speed and then with these effects included. Tests
also are done with the particle phase function that
simulates more realistic waters with a phase function
that is not monotonically decreasing as the scattering
angle increases, as with the HG model.

The procedure for the tests is as follows: The
value of g is first determined when we eliminate �
from Eqs. �5� and �6� and solve the resulting nonlin-
ear equation for g. The root solving routine zbrent
from Press et al.20 was used for this purpose. Then
the value of � is determined from Eq. �5�. The in-
verse algorithm to estimate the optical thickness ��
uses the method outlined in Garcia and Siewert21 to
compute the Chandrasekhar polynomials and the
discrete eigenvalues from Eq. �21� needed to deter-
mine c from Eqs. �17� and �18�. For the tests we
initially used the Hydrolight outputs as data for the
inverse algorithm. Following this we introduced
noise into the Hydrolight results to test the effect of
measurement errors on the inverse procedure.

A. Initial Tests

The sensitivity of the inverse algorithm to the num-
ber of quads used in the solution procedure of Hy-
drolight was first evaluated. This test was run with
the best conditions possible for the inverse method—
the scattering was described by the HG phase func-
tion, the wind speed was zero, and the data were for
only one depth just beneath the surface with the
other depth assumed at � 3 �. With the standard
quad partitions of Hydrolight �i.e., 20 polar and 15
azimuthal quads�, the recovered values of g and �
were within 2% of those used for the forward prob-
lem. Table 1 illustrates the effects of the number of
quads on the computed values of g and �. Following
this test we elected to use 100 polar quads for all
subsequent tests. This gave an acceptable accuracy
of around 2% near the surface, thus illustrating a
generic source of error with the inversion algorithm
just beneath the air–water interface even if noise-free
data are used. We also found that taking the mea-
surements at larger depths reduced the errors be-
cause the effects on the light field of the index of

Table 1. Benchmark Tests of Eqs. �5� and �6� for Radiance
Measurements Computed from Hydrolight with g � 0.9, � � 0.5, n � 1,

and with the Sun in a Black Sky

Quads % Error in g % Error in �

20 2.2 1.5
100 0.1 0.1
300 0.05 0.06

934 APPLIED OPTICS � Vol. 42, No. 6 � 20 February 2003



refraction mismatch at the surface diminish with
depth.

With the completion of these initial tests, we per-
formed all subsequent tests using the particle phase
function22 for the Hydrolight input, for which the
mean cosine of scattering �the scattering asymmetry
factor� was g � 0.923. We obtained the numerical
results displayed assuming a black sky with a solar
zenith angle of 30°, which gave slightly poorer results
than for cases with a diffuse surface illumination.

B. Single-Depth Algorithm Test

For this application, we determined g and � from
Eqs. �5� and �6� for an infinitely deep water body ���
3 �� using a single set of radiance data for one depth.
We tested the sensitivity of the method by using var-
ious values of wind speeds in the solution of the for-
ward problem. The results are shown in Figs. 1 and
2 for � � 0.5 and index of refraction n � 1.34 for the
forward problem input data obtained for the HG and
particle phase functions, respectively. When subsur-
face measurements were used, for calm waters �zero
wind speed� the errors in g were within 2.5% and in �
were within 1.5%. For higher wind speeds the errors
increased up to 8.5% for a wind speed of 10 m�s. Use
of data from greater depths reduced the errors to
within 2% even for a 10-m�s wind-blown surface.

Noise was then added to the radiance data used as
input to the inverse algorithm. The bounds of this
noise were such that the �3� limits for the Gaussian
random number generator were set to a fixed percent

of the radiance value. Tests were run with various
percent noise values. On adding 3% noise to the
data, we retrieved the values of g and � to within
approximately 10% accuracy with surface wind
speeds of zero. Noise of 5% increased the errors in
the retrieved values of g to more than 18%. With a
wind speed of 5 m�s and with 3% noise, the errors in
g increased to approximately 8%. Generally, the ef-
fects of wind speed on the errors in g and � dimin-
ished with data from larger depths.

C. Two-Depth Algorithm Tests

To test the complete algorithm to evaluate g, a, b, and
bb, data from two depths are required. For this, in
addition to using Eqs. �5� and �6�, we used Eq. �18� to
determine the optical thickness �� of the water be-
tween the two measurement depths. Once that op-
tical thickness was determined, we evaluated the
beam attenuation coefficient using Eq. �17� and hence
a and b using Eqs. �24� and �25�. Finally, we used
Eq. �26� to determine bb. The results of the tests
performed are shown in Figs. 3 and 4 for the case of
� � 0.5 and n � 1.34 for the forward problem input
data obtained for infinitely deep waters with the HG
and the particle phase functions, respectively. A
depth difference of �z � 4 m was used in the algo-
rithm.

The results show that the two-level algorithm al-
lowed us to calculate the values of a and c with errors
to within 2.5% for the case of calm waters using sub-
surface measurements. For these waters the value
of bb was retrieved with an error of 3.2%. Increasing
the wind speed increased the errors in the calculated

Fig. 1. Evaluation of g and � for the forward problem run with
the HG phase function with g � 0.9. The solid curves show the
errors in g, and the dashed curves show the errors in �. The
numbers next to the curves show the wind speed in meters per
second.

Fig. 2. Same as Fig. 1 except for the forward problem run with the
particle phase function.
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values, as expected. Also, as observed above, the
errors diminished if the two measurement locations
were assumed to be made at deeper depths.

For noise up to 3% the algorithm was stable, and
the retrieved values of a and c were evaluated to
within 10%.

D. Three-Depth Algorithm Tests

To test the algorithm for waters of finite depth, data
from two depths are first used to obtain the water
IOPs, and then data from a third depth near the
bottom allow us to calculate the bottom reflectance
properties. To evaluate the bottom reflectance, Hy-
drolight runs for a shallow water body of 5 m in depth
were used to obtain radiance data at 0.5, 3.5, and
4.5 m, respectively. We determined the values of g
and � from Eqs. �5� and �6� using the measurements
at 0.5 and 3.5 m. Equations �28�–�31� then were
used in Eqs. �5� and �6� to obtain � and 	 with the data
from 0.5 and 4.5 m.

The results show that values of � were retrieved
within 6.5% for the case of calm waters and to within
12% for the case of 10-m�s wind-blown surfaces.
The value of 	 was retrieved to a similar accuracy.
In general it was seen that the errors increased as 	
3 0. The results of this test are shown in Fig. 5.

4. Approximate Method

To avoid the need for the radiance measurements,
can something be salvaged from this procedure to

determine the optical properties? Specifically, can a
simplified version be developed to determine � and g
that avoids the need for all the directional moments
in Eqs. �7�–�10�? The answer is yes, but the penalty
is that it must be assumed that the radiance is ap-
proximately in the asymptotic regime so that23,24

L��, 
� � A��1����1, 
�exp�����1�

� A���1�����1, 
�exp����1�, (36)

where �1 is the largest eigenvalue obtained from Eq.
�21�. �Here A��1� and A���1� are coefficients that
depend on the properties of the water and the surface

Fig. 4. Same as Fig. 3 except for the forward problem run with the
particle phase function.

Fig. 5. Evaluation of bottom reflectivity � for a water column of
5 m with a Lambertian bottom. The numbers next to the curves
show the wind speed in meters per second.

Fig. 3. Evaluation of �, c, and bb for the forward problem run
with the HG phase function with g � 0.9. A depth difference of
�z � 4 m was used in the inverse algorithm. The heavy solid
curves show the errors in c, the thin solid curves show the errors
in �, and the dashed curves show the errors in bb. The numbers
next to the curves show the wind speed in meters per second.
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illumination.� After we insert approximation �36� in
Eq. �7� and use Eq. �22�, it follows that

En��� � gn��1��A��1�exp�����1�

� ��1�nA���1�exp����1��. (37)

Similarly it follows from Eq. �9�, after use of the re-
cursion relation for Legendre polynomials and Eq.
�23�, that

Ẽn��� � �1�1 � �gn� gn��1��A��1�exp�����1�

� ��1�n�1A���1�exp����1��. (38)

Approximations �37� and �38� illustrate that the
higher-order angular moments of the radiance can be
related to lower-order ones provided that the asymp-
totic approximation is valid. For example,

E2����E0��� � g2��1�

� 2�1�3�1 � ���1 � �g��1
2 � 1�. (39)

As a consequence of the degeneracy of the higher-
order angular moments of the radiance, it has been
shown that Eqs. �14� and �16� can be combined into a
single equation24:

��1�1 � ���2�E0
2��2� � E0

2��1�� � �E1
2��2� � E1

2��1��,
(40)

a result that also can be derived directly from a
transport-corrected diffusion approximation.24

Equation �40� couples together in a nonlinear way the
values of the unknowns � and g and involves the
eigenvalue �1.

The approximate method consists of our using Eqs.
�21�, �39�, and �40� to determine the three unknowns
�, g, and �1. The method requires measurement of
E0���, E1���, and E2���. Measurements of E2��� could
be performed with the detector developed by Doss
and Wells.16

To determine �� and then c, we can no longer use
Eq. �18� as it degenerates with the assumption that
the radiance is asymptotic. Instead we multiply ap-
proximation �36� by 
 and integrate from 
 � �1 to
�1 and divide the resulting relation for two different
depths to obtain

�� � �1 ln�E1��1��E1��2��, (41)

where we assumed that the water is infinitely deep,
i.e., A���1� � 0.

5. Numerical Tests with the Approximate Method

We tested the approximate method only for the deter-
mination of �, g, a, and bb because the asymptotic
approximation is not compatible with the need for
making measurements near the bottom if the bottom
reflectance properties � and 	 are to be determined.
To perform the tests we used Hydrolight output to
determine E0, E1, and E2 at various depths and used
these as input in our inverse equations. We facili-
tated the solution to the nonlinear system by precom-

puting a two-dimensional look-up table to relate values
of �, g, and �1 in the range g � �0, 1� and � � �0, 1�.

The results of our tests are shown in Fig. 6 where it
is clear that the errors in the retrieved values of g and
� decrease as irradiance measurements are taken at
deeper depths. It is also clear from Fig. 6 that better
approximations are obtained at shallower depths as
the albedo of single scattering increases. This is con-
sistent with the fact that the radiance approaches its
asymptotic value at shallower depths as the albedo
increases. Comparison of Fig. 6 with its counterpart
in Fig. 2 for the radiance measurements made with no
wind show that the errors with the diffusion approxi-
mation are not less than 2% until reaching �10 optical
depths, whereas with the radiance measurements
such errors occur at �3 optical depths.

6. Discussion

The single-scattering asymmetry factor g and the al-
bedo � can be determined with radiance data at one
depth when the water is assumed to be infinitely
deep. From data at two depths, in addition to g and
�, the scattering, absorption, and backscattering pa-
rameters �b, a, and bb� also can be determined. If
additional data at a third depth close to the bottom
are available, the two parameters characterizing the
specular–diffuse bottom boundary condition can be
estimated.

The numerical tests performed without simulated
experimental noise showed for the particle and HG

Fig. 6. Evaluation of g and � with the approximate algorithm for
the forward problem run with the particle phase function and no
wind. The solid curves show the errors in g, and the dashed
curves show the errors in �. The numbers next to the curves
show � used in the forward problem run.
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phase functions that the values of g, �, and �� could
be predicted to within 2% accuracy for calm waters
and to within 8–10% for wind-blown waters. The
bottom reflectance properties could be predicted to
within 7–12% depending on the surface wind speed.

The effect of experimental noise also was simu-
lated. It was seen that the algorithm performed
well with 3% noise. Increasing the noise beyond this
value degraded the retrieved IOPs and bottom reflec-
tance parameters. In some cases the root finding
routine returned multiple values of g, hence demon-
strating that the inverse problem with noisy data is
nonunique.

If the radiance is assumed to be asymptotic, then
the need to make full radiance measurements is elim-
inated and only the scalar and planar irradiance and
a third irradiance are needed for the inversion. The
numerical tests performed show that the approxi-
mate algorithm can be used to determine g, �, b, a,
and bb with sufficient accuracy as long as the mea-
surements are made at large depths.
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with R. Sanchez and C. D. Mobley.
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