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In this paper, algorithms for the solution of two-fluid plasma equations are presented and applied to
the study of field-reversed configurations �FRCs�. The two-fluid model is more general than the
often used magnetohydrodynamic �MHD� model. The model takes into account electron inertia,
charge separation, and the full electromagnetic field equations, and it allows for separate electron
and ion motion. The algorithm presented is the high-resolution wave propagation scheme. The wave
propagation method is based on solutions to the Riemann problem at cell interfaces. Operator
splitting is used to incorporate the Lorentz and electromagnetic source terms. The algorithms are
benchmarked against the Geospace Environmental Modeling Reconnection Challenge problem.
Equilibrium of FRC is studied. It is shown that starting from a MHD equilibrium produces a relaxed
two-fluid equilibrium with strong flows at the FRC edges due to diamagnetic drift. The azimuthal
electron flow causes lower-hybrid drift instabilities �LHDI�, which can be captured if the ion
gyroradius is well resolved. The LHDI is known to be a possible source of anomalous resistivity in
many plasma configurations. LHDI simulations are performed in slab geometries and are compared
to recent experimental results. © 2007 American Institute of Physics. �DOI: 10.1063/1.2742570�

I. INTRODUCTION

The dynamical behavior of plasmas is strongly depen-
dent on frequency. At the lowest frequency, the motion of the
electrons and ions are locked together by electrostatic forces
and the plasma behaves like an electrically conducting fluid.
This is the regime of magnetohydrodynamics �MHD�. At
somewhat higher frequencies, the electrons and ions can
move relative to each other, behaving like two separate, in-
terpenetrating fluids. At still higher frequencies, the distribu-
tion function of the plasma species is driven by anisotropies
in the velocity space. This regime is best described by the
collisionless Boltzmann equation or Vlasov equation of ki-
netic theory. In this paper, numerical schemes are developed
to simulate two-fluid plasma dynamics, i.e., physics in the
intermediate frequency regime between MHD and full ki-
netic theory. Due to the disparate scales on which plasma
dynamics occurs, a complete spectrum of mathematical mod-
els of plasmas can be derived. Among the most commonly
used fluid models are the magnetohydrodynamics model1

and the Hall MHD model. In MHD, the plasma is treated as
a single electrically conducting fluid. Although in the Hall-
MHD model a distinction is made between the bulk plasma
velocity and electron velocity, electron inertia and displace-
ment currents are ignored and electron and ion number den-
sities are assumed to be the same �quasineutrality�. A more
general approach, used in this paper, is to treat the plasma as
a mixture of multiple fluid species. In this five-moment ideal
two-fluid model, each plasma species is described by a set of
fluid equations with electromagnetic body forces. The elec-
tromagnetic fields are modeled using Maxwell equations of

electromagnetism. The two-fluid model retains both electron
inertia effects and the displacement currents and also allows
for ion and electron demagnetization. The rest of this paper
is organized as follows. First, some aspects of ideal two-fluid
physics are described. Length scales at which two-fluid ef-
fects become important are then derived. Next, a high-
resolution wave-propagation scheme2 for the solution of
these equations is presented. This scheme, originally devel-
oped by LeVeque, has been extensively used to study fluid
dynamics, elasticity, MHD,3 etc. The algorithms are bench-
marked against the Geospace Environmental Modeling
�GEM� magnetic reconnection challenge problem. It is
shown that the reconnection flux from the two-fluid model
agrees well with that computed from full particle and hybrid
simulations. Simulations of field-reversed configurations
�FRCs� equilibria and lower-hybrid drift instability �LHDI�
are presented.

II. TWO-FLUID PHYSICS

The two-fluid plasma equations can be obtained by talk-
ing moments of the Boltzmann equation. Assuming no heat
flow and a scalar fluid pressure, the following five-moment
ideal two-fluid equations listed below are obtained for each
species in the plasma:

�n

�t
+

�

�xj
�nuj� = 0, �1�

m
�

�t
�nuk� +

�

�xj
�p�kj + mnukuj� = nq�Ek + �kijuiBj� , �2�
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�E
�t

+
�

�xj
�ujp + ujE� = qnujEj . �3�

Here n is the number density, u is the mean fluid velocity, p
is the fluid scalar pressure, and E is the fluid total energy
given by

E =
p

� − 1
+

1

2
mnuiui, �4�

where �=5/3 is the adiabatic index. Further E is the electric
field, B is the magnetic flux density, q and m are the charge
and mass of the plasma species, and �kmj is the completely
antisymmetric Cevi-Levita pseudotensor, which is defined to
be ±1 for even/odd permutations of �1,2 ,3� and zero other-
wise. Summation over repeated indices is assumed. The elec-
tromagnetic fields appearing in the source terms of the fluid
equations are determined using Maxwell equations,4

� � E = −
�B

�t
, �5�

� � B = �0J +
1

c2

�E

�t
, �6�

� · E =
�c

�0
, �7�

� · B = 0. �8�

Here �0 and �0 are the permeability and permittivity of free
space, c= ��0�0�−1/2 is the speed of light, and �c and J are the
charge density and the current density defined by

�c � � qn , �9�

J � � qnu . �10�

The summations in Eqs. �9� and �10� are over all species
present in the plasma. For a plasma with s species, there are
5s+8 equations in the system.

The ideal two-fluid model is more general that the MHD
or the Hall-MHD models. To derive conditions under which
two-fluid effects, not included in the MHD or Hall MHD
model, are important, scalar and vector potentials, � and A,
are introduced. In terms of these, the electric and magnetic
fields are expressed as

E = − �� + �A/�t , �11�

B = � � A . �12�

Next, defining a generalized momentum, P�mu+qA and a
generalized vorticity, ����P=m�+qB, where �=�
�u is the fluid vorticity, the nonconservative form of the
momentum equation is written as

�P

�t
− u � � = −

�p

n
+ ��mu2/2 + �� , �13�

which is a balance law for the generalized momentum.5 Tak-
ing the curl of Eq. �13� gives

��

�t
− � � �u � �� = − � � ��p/n� . �14�

This equation applies to each species in the plasma, and, for
example for a hydrogen plasma, there are two such equa-
tions. Equation �14� can be compared to the ideal MHD re-
sult

�B

�t
− � � �v � B� = 0, �15�

where v is the “bulk” or MHD single-fluid velocity, the Hall-
MHD result6

�B

�t
− � � �ue � B� = − � � ��pe/en� , �16�

where e is electron charge, and the Euler �neutral� fluid result

��

�t
− � � �v � �� = − � � ��p/�� , �17�

where � is the mass density. From these equations, it is clear
that the two-fluid equations span the complete range from
neutral fluids, to Hall-MHD, to MHD: B→0 corresponds to
the neutral fluid limit, me /mi→0 corresponds to Hall-MHD,
while 	 / �qB /m�→0, which, as shown below, is the same as
vanishing electron and ion skin depths or ion Larmor radii,
corresponds to the ideal MHD limit.

Examining the generalized vorticity �=m��+qB /m� it
is clear that for two-fluid effects to be important,

	/	c 
 O�1� , �18�

where 	c�qB /m is the cyclotron frequency. Using the fluid
thermal velocity uT��2p / �mn� as a reference speed and
some reference length L, 	�uT /L and hence the condition

uT/�L	c� = rL/L 
 O�1� , �19�

where rL�uT /	c is defined as the Larmor radius, is ob-
tained. Instead of the fluid thermal velocity, if the typical
speed is assumed to be the Alfven speed, uA�B /��0mn,
then the condition

uA/�L	c� = �c/	p�/L 
 O�1� , �20�

where 	p��nq2 /�0m is the plasma frequency, is obtained. It
should be emphasized that the plasma frequency, Larmor ra-
dii, and cyclotron frequency are each defined separately for
each plasma species.

In summary, two-fluid effects are important when, for
both ions and electrons, rL /L
O�1� and/or when l /L

O�1�, where l�c /	p is the skin depth. Conversely, in the
limit in which the length scales are much larger than the
electron skin depth, but smaller than the ion skin depth, Hall-
MHD is an adequate model, while in the limit in which the
scale lengths are larger than ion skin depths, the MHD de-
scription is adequate.
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III. HIGH-RESOLUTION WAVE PROPAGATION
SCHEME

Inhomogeneous partial differential equations with hyper-
bolic homogeneous parts are called balance laws and arise in
a large number of physical applications. Balance laws are put
in the generic divergence form

�q

�t
+ � · f = s , �21�

where q represents the conserved variables, f the fluxes, and
s the source terms. For m balance laws in d spatial dimen-
sions q, s�Rm and f�Rm�d. A conservation law is said to
have a hyperbolic homogeneous part if for all unit vectors
��Rd the flux Jacobian, A�Rm�m, defined by

A �
��f · ��

�q
, �22�

has real eigenvalues and a complete set of right
eigenvectors.2,7 If, further, the eigenvalues are all distinct,
the homogeneous part is called strictly hyperbolic. It can be
shown that the five-moment ideal two-fluid equations have
hyperbolic homogeneous parts. It can also be shown that
higher-moment approximations to the Vlasov equations are
also hyperbolic. Hence the high-resolution wave-propagation
method, briefly described below, can be directly applied to
such equations. For a complete description of this method,
see LeVeque.2,8,9

In two dimensions, a homogeneous hyperbolic equation
is written as

�q

�t
+

�f1

�x
+

�f2

�y
= 0, �23�

where f1 and f2 are the fluxes in the X and Y direction,
respectively. This equation is discretized on a rectangular
domain �� �xa ,xb�� �ya ,yb� by introducing cells Iij

= �xi−1/2 ,xi+1/2�� �yj−1/2 ,yj+1/2�, where xi−1/2 and yj−1/2 are co-
ordinates along cell edges and �xi ,yi�, where xi��xi−1/2

+xi+1/2� /2 and yj ��yj−1/2+yj+1/2� /2, are the coordinates of
the cell center. Integrating the conservation law Eq. �23� over
cell Iij and from time tn to tn+1, the update formula

Qij
n+1 = Qij

n −
�t

�x
��F1�i+1/2,j

n+1/2 − �F1�i−1/2,j
n+1/2 �

−
�t

�y
��F2�i,j+1/2

n+1/2 − �F2�i,j−1/2
n+1/2 � �24�

is obtained. In this expression, Qij
n represents the cell average

Qij
n �

1

�x�y
	

yj−1/2

yj+1/2 	
xi−1/2

xi+1/2

q�x,y,t�dxdy , �25�

�x�xi+1/2−xi−1/2, �y�yj+1/2−yj−1/2, �t� tn+1− tn, and �F1,2�
are numerical fluxes at the cell interfaces defined as

�F1�i−1/2,j
n+1/2 �

1

�t
	

tn

tn+1

f1„q�xi−1/2,yj,t�,xi−1/2,yj…dt , �26�

�F2�i,j−1/2
n+1/2 �

1

�t
	

tn

tn+1

f2„q�xi,yj−1/2,t�,xi,yj−1/2…dt . �27�

Equation �24� is a general update formula for finite volume
schemes, and several different methods can be constructed
by selecting various approximations for the numerical fluxes.
In this paper, a specific finite volume method, the high-
resolution wave propagation method, introduced by LeVeque
is used. To introduce this method, it should be first noted that
at a given cell interface, the value of the cell averages in the
cells sharing that edge will be, in general, discontinuous.
This suggest that the numerical flux at the cell edge is deter-
mined by solving a Riemann problem at that edge.

The Riemann problem is an initial value problem,

�q

�t
+

�f1

�x
= 0, x � R �28�

with initial conditions q�x0,0�=ql and q�x�0,0�=qr,
where ql,r are constant vectors. For linear hyperbolic sys-
tems, the Riemann problem has exact solutions. For nonlin-
ear problems, a linearization is introduced to obtain solutions
valid around x=0 for short time intervals. Assuming that Eq.
�28� is a linear hyperbolic equation, it is written as

�q

�t
+ A1

�q

�x
= 0, �29�

where A1 is the flux Jacobian and is constant for the assumed
linear system. Let lp, rp, and sp be the left eigenvectors, right
eigenvectors, and eigenvalues of A1. As the system is hyper-
bolic, the eigenvalues must be all real and the eigenvectors
are assumed to be orthonormal. Multiplying by the left ei-
genvector lp, a system of uncoupled wave equations

�wp

�t
+ sp�wp

�x
= 0 �30�

is obtained, where wp� lp ·q. This has solutions wp�x , t�
=w0

p�x−spt�, where w0�x�= lp ·q�x ,0�. Once wp�x , t� is deter-
mined, q�x , t�=�pwprp and hence the Riemann problem for
linear systems �or linearized systems� is solved exactly.

In the wave propagation method, the solution to the Rie-
mann problem at each cell interface is used to derive the
following approximation to the numerical fluxes:

�F1�i−1/2,j = 1
2 ��f1�i,j + �f1�i−1,j�

+ 1
2 �A1

+�Qi−1/2,j − A1
−�Qi−1/2,j� . �31�

Introducing this expression in the update formula along with
an analogous expression for the Y direction, numerical flux
gives

Qij
n+1 = Qij

n −
�t

�x
�A1

+�Qi−1/2,j + A1
−�Qi+1/2,j�

−
�t

�y
�A2

+�Qi,j−1/2 + A2
−�Qi,j+1/2� . �32�

In these expressions, the fluctuations A1
±�Qi−1/2 �dropping

the j subscript� stand for
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A1
−�Qi−1/2 = �

p:si−1/2
p 0

Zi−1/2
p + 1

2Zi−1/2, �33�

A1
+�Qi−1/2 = �

p:si−1/2
p �0

Zi−1/2
p + 1

2Zi−1/2, �34�

where

Zi−1/2
p = li−1/2

p · ��f1�i − �f1�i−1�ri−1/2
p , �35�

and

Zi−1/2 = �
p:si−1/2

p =0

Zi−1/2
p . �36�

In deriving Eq. �32�, the identity

A1
−�Qi−1/2 + A1

+�Qi−1/2 = �
p

Zi−1/2
p = �f1�i − �f1�i−1, �37�

which follows from the definition of Zi−1/2
p �see Eq. �35��, is

used. The eigenvectors ri−1/2
p , li−1/2

p , and the eigenvalues si−1/2
p

needed in these expressions are computed using the flux
Jacobian at the cell interfaces. For linear system, this eigen-
system is constant and does not depend on the solution. For
nonlinear systems, an appropriate averaging must be used
before determining the eigensystem. In the simulations pre-
sented here, Roe averages10 are used for the Euler equations.
Unlike conventional Godunov schemes, the wave propaga-
tion method presented above can also be applied directly to
situations in which the fluxes explicitly depend on spatial
coordinates. Further, it is not necessary that Roe averages be
used �or even exist� for the hyperbolic system being solved:
simple arithmetic averages are usually sufficient. It can be
shown that even when Roe averages are not available, the
scheme continues to be conservative.8 Further, if Roe aver-
ages are used �or the system is linear� it can be shown that
the zero wave, Zi−1/2, vanishes.

Corrections can be added to make the scheme second-
order accurate. These corrections can introduce unphysical
oscillations near shocks, which can be removed by applying
a limiter to the scheme. Further corrections, called transverse
corrections, can also be added. With the transverse terms
included in the update formula, the high-resolution wave
propagation method is formally second order in space and
time for general smooth two-dimensional flow problems. It
should be mentioned that even if the transverse terms are not
used, the scheme still gives second-order accuracy. However,
with the transverse terms, the scheme is stable with Courant
numbers of 1. Further, the solution with and without the
transverse terms can be significantly different in some situa-
tions.

The source terms are handled using operator splitting.
The homogeneous system is first solved separately and then
the source terms are incorporated by solving the ordinary
differential equation �ODE�,

�q

�t
= s . �38�

To achieve second-order accuracy, and advance the complete
solution by �t, the ODE is first solved with time step �t /2.

Then the homogeneous equation is solved with time step �t.
Finally, the ODE is again solved with time step �t /2. Obvi-
ously, at each stage the results from the previous stage are
used as initial conditions. This particular operator splitting
scheme is known as Strang splitting. To solve the ODE Eq.
�38�, any standard ODE solution scheme �second order or
higher� can be used. In this paper, a fourth-order Runge-
Kutta scheme is used.

IV. COLLISIONLESS MAGNETIC RECONNECTION

Magnetic reconnection11 is the process by which the to-
pology of the magnetic field lines changes. In ideal MHD or
ideal Hall-MHD, the field line topology cannot change and
this is described by saying that field lines are “frozen” into
the fluid �frozen into the electron fluid in the case of ideal
Hall-MHD�. The situation is analogous to neutral ideal fluid
flow in which vortex tube topology remains constant. How-
ever, even small resistivity �viscosity in neutral fluids� can
make the topology change and the field lines reconnect, and
this process is adequately described in the framework of re-
sistive MHD or Hall-MHD.

However, in a collisionless plasma, magnetic reconnec-
tion is also observed to occur and at a much faster rate than
in collisional plasmas. This fast collisionless reconnection is
important in understanding many space plasma phenomena,
for example solar flares and the dynamics of the Earth’s
magnetotail during a geomagnetic substorm. To understand
the mechanism of collisionless reconnection, a number of
plasma models were used to study collisionless reconnection
of oppositely directed magnetic fields separated by a thin
current sheet. This effort went under the rubric of Geospace
Environmental Modeling �GEM� Reconnection Challenge.12

The various models used were electron MHD,13 Hall-MHD
with anisotropic pressure,14 MHD and Hall-MHD,15–17 full
particle,18 and hybrid19 models. It was found that although
reconnection initiates at length scales on the order of the
electron skin depth, the reconnection rate is governed by ion
dynamics. The two-fluid model can describe the physics at
electron skin depth scales and hence can describe collision-
less reconnection correctly. On the electron-skin depth
scales, the field lines are no longer frozen to the electron
fluid and this allows the reconnection to initiate without the
need for resistivity. On the other hand, in the Hall-MHD
model,17 the reconnection needs to be initiated by using a
small resistivity.

To benchmark the algorithms, simulations are performed
with the same initial conditions and parameters as used in the
GEM Challenge problem. The ideal two-fluid model used
here was not among one of those used in the original studies
and hence serves as an important benchmark. The results
obtained here also provide additional insight into the struc-
ture of the flow, especially after the reconnection has oc-
curred. As is described below, complex flows, not observed
in the results reported in the original studies, are obtained.

The simulation is initialized with oppositely directed
magnetic fields separated by a thin current sheet. The mag-
netic field is given by
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B�y� = B0 tanh�y/��ex. �39�

The initial current is carried only by the electrons,

Je = −
B0

�
sech2�y/�� . �40�

The number densities of the ions and electrons are initialized
as ne�y�=ni�y�=n�y�, where

n�y� = n0�1/5 + sech2�y/��� . �41�

Finally, the electron pressure is set to pe�y�= p�y� and ion
pressure to pi�y�=5p�y�, where

p�y� =
B0

12
n�y� . �42�

These initial conditions describe an equilibrium solution of
the two–fluid equations. To initiate reconnection in a con-
trolled manner, the magnetic field is perturbed with �B
=ez���, where

��x,y� = �0 cos�2�x/Lx�cos��y/Ly� , �43�

and �−Lx /2 ,Lx /2�� �−Ly /2 ,Ly /2� is the simulation domain.
This form of the perturbation assures that � ·B=0 at t=0.
Periodic boundaries are applied at x= ±Lx /2 and conducting
wall boundaries at y= ±Ly /2. Simulations presented below
are for a 512�256 grid, although coarser grids were also
used. The other parameters used are me /mi=1/25, Lx=8�,
Ly =4�, B0=0.1, �0=B0 /10, and �=0.5. The unit length
scale is the ion skin depth and the unit time scale is in in-
verse ion cyclotron frequency. For the selected electron-ion
mass ratio, the electron skin depth is 1 /5 and is resolved by
the grid. These parameters are identical with the GEM chal-
lenge problem.

To compare results with the models used in the GEM
challenge problem, the reconnected flux, �, was computed
using

��t� =
1

2Lx
	

−Lx/2

Lx/2


By�x,y = 0,t�
dx . �44�

As the reconnection proceeds, the reconnected flux, which is
a measure of the net Y direction magnetic field, increases and
indicates the reconnection rate. Figure 1 shows the recon-
nected flux history. It is observed that the reconnection oc-
curs at about t=10 and the reconnected flux increases rapidly
after that. The computed flux history is in excellent agree-
ment with flux histories from full particle and hybrid models
used in the original GEM Challenge problem. From the
GEM results, it is also clear that the resistive Hall-MHD

FIG. 1. Two-fluid reconnected flux compared to GEM results. Time in ion-
cyclotron periods is plotted on the X axis and reconnected flux on the Y axis.
Solid dots are results obtained using the two-fluid model. Two-fluid results
compare well with those obtained by particle and hybrid models.

FIG. 2. Electron thermal energy �top
left�, ion thermal energy �top right�,
electron kinetic energy �bottom left�,
and ion kinetic energy �bottom right�.
Time in ion-cyclotron periods is plot-
ted on the X axis. The electromagnetic
energy released is transformed into ki-
netic and thermal energy of the fluids.
After about t=25, fluid kinetic ener-
gies decay as fluids become turbulent.
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model also predicts the correct reconnected flux. However, in
contrast to resistive Hall-MHD, the two-fluid model pre-
sented here does not have any resistivity. The reconnection
initiates due to the demagnetization of the electrons at elec-
tron skin depth scales, and thus resistivity is not required to
break the field lines as in Hall-MHD. Thus, in the two-fluid
model the magnetic field-line topology is not tied to the elec-
tron fluid as it is in the ideal Hall-MHD.

As the domain is periodic in the Y direction and there are
conducting walls on the x= ±Ly /2, the total energy of the
system remains constant in time. Figures 2 and 3 show the
history of the electromagnetic and total energy of the system.
The initial configuration of the system is an unstable equilib-
rium and via the process of reconnection the magnetic field
“relaxes,” i.e., the electromagnetic energy stored in the mag-
netic field is transferred to the fluid energy. The electromag-
netic energy decays rapidly after about t=10 and is trans-
ferred to the fluid energy. After t=25, the fluid kinetic energy
decreases and is transformed to the fluid thermal energy.
Even though the fluids are inviscid, this conversion occurs

due to adiabatic compression of the fluid. Further, the fluid
undergoes shock-heating as the shock waves, visible in Figs.
4 and 5, pass through the fluid.

Figure 3 shows the total energy of the system. The total
energy should be conserved as the two-fluid system does not

FIG. 3. Electromagnetic energy as a function of time �top� and total energy
�bottom� for the GEM magnetic reconnection challenge problem. After re-
connection occurs, the electromagnetic energy decays, the released energy
being transformed to fluid thermal and kinetic energies. The total energy
should remain conserved; however, it is seen to decay slightly due to nu-
merical diffusion. The total loss in energy is 0.7% for the time period
considered.

FIG. 4. Electron momentum �top� and ion momentum �bottom� at t=25.
Inward traveling shock waves are visible in both fluids. Thin jets flowing
along the X axis are also visible.

FIG. 5. Electron momentum �top� and ion momentum �bottom� at t=40.
Complex flow features are visible, especially in the ion fluid. Flow structure
is thought to develop due to instabilities.
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have any dissipation, and conducting wall boundary condi-
tions are used. However, due to numerical diffusion, the total
energy reduces slightly. From the figure it is clear that the
loss in energy is only about 0.7%, showing that the scheme
used here is conservative even in the presence of complex
flow features.

Electron and ion momentum at t=25 and 40 are shown
in the gray-scale plots, Figs. 4 and 5. At t=25, shock waves
traveling inward �toward the Y axis� are observed. These
shocks are formed due to the interaction of the outward flow-
ing jets �along the X axis�. At t=40, complex flow structures
are seen in the ion fluid. The shocks at x� ±5.5 are now
moving outwards �away from the Y axis�. The ion flow is not
symmetric and this may be due to grid-driven instabilities.
The nature of the flow at late times seems to be governed by
instabilities driven from the counter-streaming fluid jets.

V. AXISYMMETRIC TWO-FLUID EQUILIBRIA
AND FIELD-REVERSED CONFIGURATIONS

The field-reversed configuration �FRC� and Spheromak20

belong to the family of compact toroids. These devices do
not have any internal material structures �“compact”�, allow-
ing the plasma to extend to the device axis. The magnetic
field topology is that of a closed donut-shaped surface �“to-
roidal”�. It is known that two–fluid effects play an important
role in FRC physics. Two-fluid formalism to study FRC
stability21–25 has been developed extensively. Relaxation of
two–fluid equilibria has also been studied.5 However, no de-
tailed numerical studies of FRCs using the two–fluid model
have been performed before, although some results have
been obtained using particle simulations.26

A. Relaxation to two-fluid equilibrium

To study the nature of two-fluid equilibria, simulations
were performed by initializing with an ideal MHD equilib-
rium. A rigid rotor solution for FRCs was selected. The FRC
aspect ratio was assumed to be 5. Note that the initial con-
ditions were computed using ideal-MHD and not two-fluid
equilibrium, and hence the plasma undergoes a relaxation
process into a new two-fluid equilibrium. In general, two-
fluid equilibria are hard to compute, but the formalism has
been developed for the full two-fluid equations by
Steinhauer.5

The simulation was run until the plasma had relaxed to a
new two-fluid equilibrium. The relaxed solutions are shown
in Fig. 6. The density profiles show that the plasma has
moved toward the FRC separatrix, possibly due to the cen-
trifugal force of the rotating plasma. The velocity profiles of
the electron and ion fluids are shown in Figs. 7. Diamagnetic
drift due to the pressure gradients at the FRC edge causes
strong azimuthal flow of the fluids.

B. LHDI in cylindrical plasma configurations

Field-reversed configuration �FRC� is a plasma fusion
device where the magnetic field is used to confine the plasma
until fusion temperatures are reached and fusion initiates. In
this section, FRC simulations are performed in the r-� plane
showing the formation of the lower-hybrid drift instability

�LHDI� in FRCs. The two-fluid simulation performed in this
section is for elongated FRCs in which � /�z�0. The initial
conditions were computed from the two-fluid equilibrium
equations obtained by setting � /���0, ur=0, which, for sta-
tionary ions, are written as

− mn
u�

2

r
= −

�p

�r
− enu�Bz, �45�

�Bz

�r
= e�0mnu�. �46�

Here u� is the electron azimuthal velocity, Bz is the magnetic
field in the Z direction, p is the pressure, and −e is the elec-
tron charge. For an FRC, from the magnetic field Bz�r�
changes sign across the domain. A number of “reversed
field” magnetic profiles were selected. The electron current
needed to support this field was computed from Eq. �46�.
Once u� was determined, the pressure profile was determined
from Eq. �45�. Figure 8 shows the total electron momentum
for one such magnetic field profile. The various simulations
were performed by varying the magnetic field profile so as to
control the thickness of the current sheet needed to support

FIG. 6. Current density profile �top� and in the midplane �bottom� for a
relaxed two-fluid equilibrium.
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the field. An initial m=1 mode perturbation was applied to
the electron momentum and the simulation was run to t
=20. This initial perturbation corresponds to a long-
wavelength �on the order of the current sheet length� pertur-
bation. Time in these simulations was measured in light tran-
sit times across the domain.

Figure 9 shows the electron momentum at t=10 for the
current profile in Fig. 8. It is clear that the current sheet has
broken up into smaller structures, each about an ion Larmor
radius long. These smaller structures have a much shorter
wavelength than the applied perturbation, thus showing that
the short-wavelength instability is more unstable than the
long-wavelength one.

Figure 10 shows the electron momentum at t=10, for a

FIG. 7. Electron �top� and ion �bottom� and velocity on relaxations. The
fluid shows strong azimuthal flow close to the outermost FRC flux surfaces.

FIG. 8. Electron momentum in the r-� plane for a field reversed pinch. The
electrons have an azimuthal velocity, which supports an out-of-plane mag-
netic field Bz.

FIG. 9. Electron momentum in the r-� plane for a field-reversed pinch at
t=10. The current sheet has broken up into smaller structures, each of which
is about an ion Larmor radius long.

FIG. 10. Electron momentum in the r-� plane for a field reversed pinch at
t=10. The current sheet is thinner than in the previous simulations and is
seen to break up into a larger number of pieces.
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thinner current profile than in Fig. 8. With this current pro-
file, the sheet breaks up into finer structures. It is also seen
that the sheet has become thicker, which is a typical signa-
ture of anomalous resistivity. Figure 11 shows the electron
momentum at t=20. The current sheet has become thicker
and the small-scale instability has spread outwards toward
the pinch walls.

VI. LHDI IN PLANAR PLASMA CONFIGURATIONS

To understand the mechanism of the LHDI better, simu-
lations were also performed in planar current sheet geometry.
Nonlocal linear theory of this instability has been performed
by Yoon, Lui, and Sitnov27 within the two-fluid model pre-
sented here. A Harris current sheet equilibrium was selected.
The electron and ion number densities were set to ne=ni

=n�x�, where

n�x� = n0 sech2�y/L� , �47�

where L is the half-width of the current sheet. The magnetic
field was initialized by

B�y� = ẑB0 tanh�y/L� , �48�

where ẑ is a unit vector in the Z direction. The electron and
ion velocities were set to vi= x̂vi and ve= x̂ve, where vi and ve

are constants and x̂ is the unit vector in the X direction. The
initial equilibrium values were perturbed using a perturbation
with wavelength given by the domain length.

The current sheet is neutrally stable to the long-
wavelength perturbation applied. As the simulation
progresses, the sheet simply oscillates about its equilibrium
position and appears to “slosh” inside the domain. Figure 12
shows the electron momentum at t=100 and 200. The initial
perturbation has kinked the sheet, though the kink does not
grow. Figure 12 also shows the electron density at t=200. It
is now seen that small structures are forming at the edge of
the current sheet. These structures are each about one ion
Larmor radius wide. These structures are a typical signature

of the onset of the LHDI, which starts at the location where
the density gradient is maximum. Figure 13 shows the elec-
tric fields at the same time �t=200�. The structure of the
electric fields in this figure is typically seen in hybrid simu-
lations and typically indicates the onset of the LHDI.

After t=200, the LHDI instability grows very rapidly,
and the “finger”-like structures elongated ultimately breaking
up the sheet. Figure 14 shows the electron density at t=250
just as the sheet is about to break up. Two separate perturba-
tions are clearly seen in this figure. The long-wavelength
applied kink-mode perturbation is still clearly visible while
the short-wavelength LHDI has now almost saturated the
flow. This figure dramatically illustrates that the although the
sheet is stable to the long-wavelength perturbations, it is un-
stable to the shorter-wavelength LHDI.

Anomalous resistivity was computed from the simula-
tion data as �= �E · j� / �j · j�. This was compared o the Spitzer

FIG. 11. Electron momentum in the r-� plane for a field-reversed pinch at
t=20. The current sheet has now completely diffused away, and shows many
fine-scale features in the electron flow pieces.

FIG. 12. Electron density at t=100 �top� and t=200 �bottom� for a Harris
current sheet kink mode. The sheet is neutrally stable to the applied initial
long-wavelength perturbation and simply oscillates about its initial position.
At t=200, lower-hybrid drift instability has just started to form at the edge
of the current sheet and is visible as small bumps about an ion Larmor
radius thick. The instability grows rapidly after this point soon breaking up
the sheet completely.
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resistivity value for the simulation parameters. As the tem-
perature of the fluids does not change in the course of the
simulation, the Spitzer resistivity remains a constant. From
Fig. 15, it is clear that the anomalous resistivity is much
higher than the one predicted by Spitzer values. At peak, the
anomalous resistivity is about an order of magnitude larger.
After the sheet breaks up, the resistivity rapidly decays. This
may not be physically accurate, and addition of collisions to
the model may help remedy this.

The numerically computed anomalous resistivity was
compared to the experimentally measured values from the
Translation Sustainment and Confinement �TCS� experiment
at the University of Washington. The values are summarized
in Table I. The measured and computed values are of the
same order of magnitude and hence show that the LHDI is a
plausible mechanism for the anomalous resistivity observed
in the experiments. These simulations also indicate that FRC
lifetime in experiments can be increased if the plasma is kept
hotter, or is not allowed to cool rapidly. One way to achieve
this would be to minimize the energy loss from radiation due
to impurities, a significant loss mechanism in existing experi-
ments.

TABLE I. The average cross-field resistivity determined from absorbed
RMF power computed by assuming rigid rotor rotation. Data were obtained
from the TCS experiment at the University of Washington.

Shot No. RMF Field �G� RMF Freq. �KHz� vd /ci � /�classical

8966 45.4 114 2.22 11.12

8971 45.4 114 2.34 12.77

8997 38.4 114 2.32 7.97

9071 37.8 114 2.62 12.46

FIG. 13. Out-of plane electric field Ez �upper panel� and in-plane electric
field Ex at t=200. The structure of the electric fields seen is a signature of
the LHDI in the sheet.

FIG. 14. Electron density at t=250 for a Harris current sheet kink mode.
The lower-hybrid drift has now completely set in and the sheet has broken
up into thin structures. A secondary Kelvin-Helmholtz instability is also
visible as there is a significant velocity shear at the edge of the instability.

FIG. 15. Average anomalous resistivity �red� estimate as a function of time.
The temperature of the fluids does not change in this simulation and thus
classical Spitzer resistivity �blue� cannot account for the LHDI.
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