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Edge region very important but poorly understood

I Need high pedestal temperature for core to get to fusion
temperatures

I Need ways to reduce/suppress ELMs than can damage divertor
plates

I Is there a way to enhance spontaneous flow to reduce turbulence?

I How much can Lithium improve performance?

A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms http://www.ammar-hakim.org/sj



Edge region of tokamaks and stellerators is very difficult
and efficient numerical methods are needed

Detailed understanding of edge physics relatively poor compared to
core of tokamak.

I Tokamak edge physics relatively unexplored: no complete
model of self-consistent cross-field transport in open-field line
region, very little study of neutral transport, wall effects, etc.

I Large density/amplitude variations, large relative banana
width, wide range of collisionalities

I Stick with full-F simulations
I Need good algorithms to distinguish physical oscillations from

numerical noise (Gibb’s phenomena)

I Complicated geometry and magnetic topology, X-points, open
field lines, divertor plates ...
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Long term goal: Accurate and stable continuum schemes
for full-F edge gyrokinetics in 3D geometries

Question
Can one develop accurate and stable schemes that conserve invariants,
maintain positivity and use as few grid points as possible?

Proposed Answer
Explore high-order hybrid discontinuous/continuous Galerkin
finite-element schemes, enhanced with flux-reconstruction and a proper
choice of velocity space basis functions.
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Long term goal: Accurate and stable continuum schemes
for full-F edge gyrokinetics in 3D geometries

Dream Goal
A robust code capable of running very quickly at coarse velocity
space resolution while preserving all conservation laws of
gyro-fluid/fluid equations and giving fairly good results. Can
occasionally turn up velocity resolution for convergence tests.

To achieve this, exploring combination of techniques

I Efficient, high order, hybrid DG/finite-element scheme with
excellent conservation properties.

I Subgrid turbulence models/hypercollision operators and
limiters than enable robust results on coarse grids.

I Maxwellian-weighted basis functions.
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Discontinuous Galerkin algorithms represent state-of-art
for solution of hyperbolic partial differential equations

I DG algorithms hot topic in CFD and applied mathematics. First
introduced by Reed and Hill in 1973 for neutron transport in 2D.

I General formulation in paper by Cockburn and Shu, JCP 1998.
More than 700 citations.

I DG combines key advantages of finite-elements (low phase error,
high accuracy, flexible geometries) with finite-volume schemes
(limiters to produce positivity/monotonicity, locality)

I Certain types of DG have excellent conservation properties for
Hamiltonian systems, low noise and low dissipation.

I DG is inherently super-convergent: in FV methods interpolate p
points to get pth order accuracy. In DG interpolate p points to get
2p− 1 order accuracy.

DG combined with FV schemes can lead to best-in-class explicit
algorithms for hyperbolic PDEs.

A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms http://www.ammar-hakim.org/sj



Discontinuous Galerkin can be a potential “game changer”
for (gyro)kinetic plasma simulations

Edge/pedestal gyrokinetic turbulence is very challenging, 5D
problem not yet solved. Benefits from all tricks we can find.

I Factor of 2 reduction in resolution would lead to 64× speedup.

I Higher order methods require more FLOPs per data point, but
more efficient on modern CPUs where memory bandwidth is
the limitation. Combined with data-locality, means modern
CPU/GPU optimization can be better (cache optimization,
vectorization, fast linear-algebra routines, etc.).
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Essential idea of Galerkin methods: L2 minimization of
errors on a finite-dimensional subspace

Consider a general time-dependent problem

f ′(x, t) = G[f ]

where G[f ] is some operator. To approximate it expand f(x) with a
finite set of basis functions wk(x),

f(x, t) ≈ fh(x, t) =

N∑
k=1

fk(t)wk(x)

This gives discrete system

N∑
k=1

f ′kwk(x) = G[fh]

Question
How to determine f ′k in an optimum manner?
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Essential idea of Galerkin methods: L2 minimization of
errors on a finite-dimensional subspace

Answer: Do an L2 minimization of the error, i.e. find f ′k such that

EN =

∫ [ N∑
k=1

f ′kwk(x)−G[fh]

]2
dx

is minimum. For minimum error ∂EN/∂f
′
m = 0 for all k = 1, . . . , N .

This leads to the linear system that determines the coefficients f ′k∫
wm(x)

(
N∑

k=1

f ′kwk(x)−G[fh]

)
dx = 0

for all m = 1, . . . , N .

Key Idea
Projection of residual on the basis set chosen for expansion leads to
minimum errors in the L2 sense. For this reason DG/CG schemes are
constructed by projecting residuals of PDEs on basis sets.
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What does a typical L2 fit look like for discontinuous
Galerkin scheme?

Discontinuous Galerkin schemes use function spaces that allow
discontinuities across cell boundaries.

Figure: The best L2 fit of x4 + sin(5x) with piecewise linear (left) and quadratic
(right) basis functions.
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Passive advection is a good prototype to study DG schemes

Consider the 1D passive advection equation on I ∈ [L,R]

∂f

∂t
+ λ

∂f

∂x
= 0

with λ the constant advection speed. f(x, t) = f0(x− λt) is the
exact solution, where f0(x) is the initial condition. Designing a
good scheme is much harder than it looks.

I Discretize the domain into elements Ij ∈ [xj−1/2, xj+1/2]

I Pick a finite-dimensional function space to represent the
solution. For DG we usually pick polynomials in each cell but
allow discontinuities across cell boundaries

I Expand f(x, t) ≈ fh(x, t) =
∑

k fk(t)wk(x).
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Discrete problem can be stated as finding the coefficients
that minimize the L2 norm of the residual

The discrete problem in DG is stated as: find fh in the function
space such that for each basis function ϕ we have∫

Ij

ϕ

(
∂fh
∂t

+ λ
∂fh
∂x

)
dx = 0.

Integrating by parts leads to the discrete weak-form∫
Ij

ϕ
∂fh
∂t

dx+ λϕj+1/2f̂hj+1/2 − λϕj−1/2f̂hj−1/2 −
∫
Ij

dϕ

dx
λfh dx = 0.

Here f̂h = f̂(f+
h , f

−
h ) is the consistent numerical flux on the cell

boundary. Integrals are performed using high-order quadrature
schemes.
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Picking a good numerical flux is key to stability, accuracy
I Take averages

f̂h(f+h , f
−
h ) =

1

2
(f+h + f−h )

I Use upwinding

f̂h(f+h , f
−
h ) = f−h λ > 0

= f+h λ < 0

I Or some combination

f̂h(f+h , f
−
h ) =

1

2
(f+h + f−h )

+
c

2
(f+h − f

−
h )

For system of nonlinear equations (Euler, ideal MHD, etc.) there is
cottage industry on choosing numerical fluxes. Google “Riemann solvers”
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Example: Piecewise constant basis functions lead to
familiar difference equations

I A central flux with piecewise constant basis functions leads to
the familiar central difference scheme

∂fj
∂t

+ λ
fj+1 − fj−1

2∆x
= 0

I An upwind flux with piecewise constant basis functions leads
to the familiar upwind difference scheme (for λ > 0)

∂fj
∂t

+ λ
fj − fj−1

∆x
= 0

Solution is advanced in time using a suitable ODE solver, usually
strong-stability preserving Runge-Kutta methods.
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Example: Piecewise constant basis functions with central
flux leads to dispersive errors

Figure: Advection equation solution (black) compared to exact solution (red) with
central fluxes and piecewise constant basis functions.
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Example: Piecewise constant basis functions with upwind
flux is very diffusive

Figure: Advection equation solution (black) compared to exact solution (red) with
upwind fluxes and piecewise constant basis functions.
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Example: Piecewise linear space with upwind flux leads to
good results

Figure: Advection equation solution (black) compared to exact solution (red) with
upwind fluxes and piecewise linear basis functions.

In general, with upwind fluxes and linear basis functions numerical
diffusion goes like |λ|∆x3∂4f/∂x4.
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Summary of DG schemes

I Pick basis functions. These are usually piecewise polynomials,
but could be other suitable functions.

I Construct discrete weak-form using integration by parts.

I Pick suitable numerical fluxes (Riemann solvers) for the
surface integrals.

I Pick a suitable quadrature scheme to perform surface and
volume integrals.

I Use Runge-Kutta (or other suitable) schemes for evolving the
equations in time.

Other major topics in DG: limiters for positivity/monotonicity,
nodal vs. modal basis functions, Serendipity basis functions,
diffusion terms, general geometry, error and accuracy analysis,
hp-refinement, etc.
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Several fluid and kinetic problems can be written with
Poisson bracket structure leading to phase-space advection
equation

∂f

∂t
+ {f,H} = 0

where H(z1, z2) is the Hamiltonian and canonical Poisson bracket
is

{g, h} ≡ ∂g

∂z1

∂h

∂z2
− ∂g

∂z2

∂h

∂z1
.

Defining phase-space velocity vector α = (ż1, ż2), with
żi = {zi, H} leads to phase-space conservation form

∂f

∂t
+∇ · (αf) = 0.
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Example: Incompressible Euler equations in two dimensions
serves as a model for E ×B nonlinearities in gyrokinetics

A basic model problem is the incompressible 2D Euler equations
written in the stream-function (φ) vorticity (ζ) formulation. Here
the Hamiltonian is simply H(x, y) = φ(x, y).

∂ζ

∂t
+∇ · (uζ) = 0

where u = ∇φ× ez. The potential is determined from

∇2φ = −ζ.
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Example: Hasegawa-Wakatani equations serve as a model
for drift-wave turbulence in tokamak edge

The Hasegawa-Wakatani equations describe E ×B driven flows in
certain limits:

∂n

∂t
+ {φ, n+N} = D(φ− n)

∂ζ

∂t
+ {φ, ζ} = D(φ− n)

with ∇2φ = ζ. Here n is the number density fluctuations, ζ the
E ×B vorticity, φ is the potential, D is an adiabacity parameter
and N(x) is the fixed background density profile.
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Example: Vlasov equation for electrostatic plasmas

The Vlasov-Poisson system has the Hamiltonian

H(x, p) =
1

2m
p2 + qφ(x)

where q is species charge and m is species mass and p = mv is
momentum. With this ẋ = v and v̇ = −q∂φ/∂x leading to

∂f

∂t
+ v

∂f

∂x
− q

m

∂φ

∂x

∂f

∂v
= 0
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It is important to preserve quadratic invariants of these
systems

The incompressible Euler equations has two quadratic invariants,
energy

∂

∂t

∫
K

1

2
|∇φ|2dΩ = 0

and enstrophy

∂

∂t

∫
K

1

2
ζ2dΩ = 0.

Similar invariants can be derived for Vlasov-Poisson and
Hasegawa-Wakatani equations. In addition, Vlasov-Poisson also
conserves momentum.

Question
Can one design schemes that conserve these invariants?
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A DG scheme is used to discretize phase-space advection
equation

To discretize the equations introduce a mesh Kj of the domain K.
Then the discrete problem is stated as: find ζh in the space of
discontinuous piecewise polynomials such that for all basis
functions w we have∫

Kj

w
∂ζh
∂t

dΩ +

∫
∂Kj

w−n ·αhζ̂h dS −
∫
Kj

∇w ·αhζh dΩ = 0.

Here ζ̂h = ζ̂(ζ+
h , ζ

−
h ) is the consistent numerical flux on ∂Kj .
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A continuous finite element scheme is used to discretize
Poisson equation

To discretize the Poisson equation the problem is stated as: find
φh in the space of continuous piecewise polynomials such that for
all basis functions ψ we have∫

K
ψ∇2φhdΩ = −

∫
K
ψζhdΩ

Questions
How to pick basis functions for discontinuous and continuous
spaces? We also have not specified numerical fluxes to use. How
to pick them? Do they effect invariants?
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Only recently conditions for conservation of discrete energy
and enstrophy were discovered

Energy Conservation
Liu and Shu (2000) have shown that discrete energy is conserved for 2D
incompressible flow if basis functions for potential are a continuous
subset of the basis functions for the vorticity irrespective of numerical
flux chosen! We discovered extension to discontinuous phi for the Vlasov
equation.

Enstrophy Conservation
Enstrophy is conserved only if central fluxes are used. With upwind
fluxes, enstrophy decays and hence the scheme is stable in the L2 norm.

DG with central fluxes like high-order generalization of the well-known
Arakawa schemes, widely used in climate modeling and recently also in
plasma physics.
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For Vlasov-Poisson momentum conservation is not exact
but is independent of velocity resolution

For electrostatic problems the condition for conservation of
discrete momentum reduces to vanishing of the average force.
However we can show that∫

nhEh dx 6= 0

Hence momentum is not exactly conserved.
One can imagine smoothing Eh or solving the Poisson equation
with higher order continuity. However, we have not yet been able
to construct a direct scheme that conserves momentum and energy
simultaneously.
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Small errors in momentum conservation, independent of
velocity space resolution and converging rapidly with
spatial resolution

Nx Error P1 Order

8 1.3332× 10−3

16 3.9308× 10−4 1.76

32 8.5969× 10−5 2.19

64 1.5254× 10−5 2.49

128 2.3105× 10−6 2.72

Nx Error P2 Order

8 1.9399× 10−5

16 4.0001× 10−7 5.60

32 5.1175× 10−8 2.97

64 2.2289× 10−9 4.52

128 8.9154× 10−11 4.64
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Summary of hybrid DG/CG schemes for Hamiltonian
systems

I With proper choice of function spaces and a central flux, both
quadratic invariants are exactly conserved by the semi-discrete
scheme.

I With upwind fluxes (preferred choice) energy is still conserved,
and the scheme is stable in the L2 norm of the solution.

I For Vlasov-Poisson system there are small errors in
momentum conservation even on a coarse velocity grid, and
decrease rapidly with spatial resolution.

Questions
Can this scheme be modified to conserve momentum exactly? Can
time discretization exactly conserve these invariants? Perhaps try
symplectic integrators ...
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Prototype code named Gkeyll is being developed

I Gkeyll is written in C++ and is inspired by framework efforts like
Facets, VORPAL (Tech-X Corporation) and WarpX (U.
Washington). Uses structured grids with arbitrary dimension/order
nodal basis functions.

I Package management and builds are automated via scimake and
bilder, both developed at Tech-X Corporation.

I Linear solvers from Petsc1 are used for inverting stiffness matrices.

I Programming language Lua2, used in widely played games like
World of Warcraft, is used as an embedded scripting language to
drive simulations.

I MPI is used for parallelization via the txbase library developed at
Tech-X Corporation.

1http://www.mcs.anl.gov/petsc/
2http://www.lua.org
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Simulation journal with results is maintained at
http://www.ammar-hakim.org/sj

Results are presented for each of the
equation systems described above.

I Incompressible Euler equations

I Hasegawa-Wakatani equations

I Vlasov-Poisson equations

Figure: [Movie] Swirling flow problem. The
initial Gaussian pulses distort strongly but
regain their shapes after a period of
1.5 seconds.
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Double shear problem is a good test for resolution of
vortex shearing in E ×B driven flows

Figure: [Movie] Vorticity from double shear problem with piecewise quadratic DG
scheme on 128 × 128 grid.
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Double shear problem is a good test for resolution of
vortex shearing in E ×B driven flows

Vorticity at t = 8
with different grid
resolutions and
schemes. Third
order DG scheme
runs faster and
produces better
results than DG2
scheme.
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Vortex waltz problem tests resolution of small-scale vortex
features

Figure: [Movie] Vorticity from vortex waltz problem with piecewise quadratic DG
scheme on 128 × 128 grid.
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Vortex waltz problem tests resolution of small-scale vortex
features and energy and enstrophy conservation

Figure: Vorticity for the vortex waltz
problem with the piecewise quadratic
scheme on a 128 × 128. Upwind fluxes
were used for this calculation.

Figure: Energy and enstrophy error for
vortex waltz problem. Central fluxes were
used and show O(∆t)3 convergence on a
fixed 64 × 64 grid.
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Initial studies of Hasegawa-Wakatani drift-wave turbulence
are carried out

Figure: [Movie] Number density from Hasegawa-Wakatani drift-wave turbulence
simulations with adiabacity parameter D = 0.1.
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Initial scans of turbulent structures were performed with
varying adiabacity parameter

Figure: Number density from Hasegawa-Wakatani drift-wave turbulence simulations
with adiabacity parameter D = 0.1 (left) and D = 1.0.
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Linear Landau damping simulations were compared with
exact solutions of dispersion relations

Field energy (blue) as a
function of time for linear
Landau damping problem
with k = 0.5 and
Te = 1.0. The red dots
represent the maxima in
the field energy which are
used to compute a linear
least-square fit. The slope
of the black line gives the
damping rate.

A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms http://www.ammar-hakim.org/sj



Nonlinear Landau damping simulations show particle
trapping and phase-space hole formation

Field energy as a function
of time for nonlinear
Landau damping problem
with k=0.5, Te = 1.0 and
α = 0.5. The initial
perturbation decays at a
rate of γ = 0.2916, after
which the damping is
halted from particle
trapping. The growth rate
of this phase is
γ = 0.0879.

A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms http://www.ammar-hakim.org/sj



DG scheme can efficiently capture fine-scale features in
phase-space

Figure: [Movie] Distribution function from nonlinear Landau damping problem.

A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms http://www.ammar-hakim.org/sj



DG scheme can efficiently capture fine-scale features in
phase-space
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A particle, momentum and energy conserving
Lenard-Bernstein collision operator is implemented

A simple collision operator is
implemented:

CLB [f ] =
∂

∂v

(
ν(v − u)f + νv2t

∂f

∂v

)
Figure shows relaxation of an
initial step-function
distribution function to
Maxwellian due to collisions.
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Conclusions: Our tests confirm that DG algorithms are
promising for kinetic problems

I A discontinuous Galerkin scheme to solve a general class of
Hamiltonian field equations is presented.

I The Poisson equation is discretized using continuous basis
functions.

I With proper choice of basis functions energy is conserved.

I With central fluxes enstrophy is conserved. With upwind
fluxes the scheme is L2 stable.

I Momentum conservation has small errors but is independent
of velocity space resolution and converges rapidly with spatial
resolution.
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Future work: extend scheme to higher dimensions, general
geometries and do first physics problems

I The schemes have been extended to higher dimensions and
Serendipity basis functions are being explored (with Eric Shi).
Testing is in progress.

I Maxwellian weighted basis functions for velocity space discretization
will be developed to allow coarse resolution simulations with the
option of fine scale resolution when needed.

I A collision model is implemented. It will be tested with standard
problems and extended to higher dimensions.

I Extensions will be made to take into account complicated edge
geometries using a multi-block structured grid.
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