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Major Motivations

o Edge region is important, but complicated

o Tokamak edge physics relatively unexplored: no complete
model of self-consistent cross-field transport in open-field
line region, very little study of neutral transport, wall
effects, etc.

o Large density/amplitude variations, large relative banana
width, wide range of collisionalities
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Major Motivations

o Need comprehensive simulations of edge turbulence
because predicted fusion performance strongly dependent
on edge temperature

o ELM suppression/mitigation, spontaneous flow, Li walls

o Need new code or major extensions to existing codes to
handle edge region

o Advanced algorithms can help with these additional
challenges
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Gkeyll Overview

o Prototype code to explore advanced
algorithms for continuum edge
gyrokinetic simulation (e.g. edge
plasma turbulence)

o Hybrid discontinuous/continuous
Galerkin methods augmented with
reconstruction techniques from finite
volume schemes

o Main code is written in C++
o Lua scripts for simulations

Goal

A robust code capable of running very quickly at coarse velocity
space resolution while preserving all conservation laws of
gyro-fluid/fluid equations and giving fairly good results.
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Objective

Explore basis functions that reduce computational effort, yet
retain the formal high-order accuracy for 4-D/5-D gyrokinetic
simulations

o 1024 unknowns per element using standard 3rd order
element in 5-D

o Investigate serendipity basis functions
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Hyperbolic PDEs

o Conservation laws

aQ 3
SE4VFQ = 9(Q

T=200.000000

o Wave equations

o Euler equations ;

o Navier-Stokes equations T

o Two-Fluid MHD B :

o Vlasov Equation S TNe s

o Hasegawa-Wakatani e e
equations

o Gyrokinetic equations
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Finite Element Methods

o Technique for solving systems of PDEs

o Example: Consider a differential equation with the exact
solution in blue

o Seek approximate solution (red) as a sum of piecewise
linear functions

A
X,=0
Image from Wikipedia
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Finite Element Methods

o Partition solution domain into elements of simple
geometrical shape (mesh)
o Each element contains a number of nodes
o Use finite element analysis to find the ‘optimal’ linear
combination of basis functions for approximate solution

K
u(x) ~ a(x) = Z WNk(x), Ni(x;) = &
k=1

o The Ni(x) (blue) are basis functions, x; are nodes

X,=0

Tmaoe from Wikinedia
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Finite Element Methods

o Due to basis function properties, approximate solution can
be expressed in terms of the function values at the nodes

K
k=

u(x) ~ i(x) = ) #(xINK(X), Ni(x)) = O

1

o Solve K algebraic equations to find unknown weights
Wy = i’z(xk/ t)

Image from Wikipedia
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Finite Element Methods

o Nodal basis functions Ni(x) evaluate to 1 at node x; and 0 at
EVery Xjx

o There is flexibility in choosing basis functions—don’t need to
use tent functions

o Two strategies for increasing accuracy:

o Use smaller elements (more elements to discretize domain)
o Use basis functions composed of higher degree polynomials

o Cost of using higher-degree basis functions is more degrees
of freedom (unknowns) per element

o Use higher-degree basis functions with larger elements?
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Polynomial Completeness

o If basis functions span a complete Nth degree polynomial

and finite elements have length /, error behaves as
lu — ii]| < ChN*

o Useful to recall Pascal triangle:

/\/\/\/\/\/\

Fig. 4.5 The Pascal triangle. (Cubic expansion shaded — 10 terms.)

Image from The Finite Element Method: Its Basis and Fundamentals
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Degrees of Freedom (DOF)

o In the FEM, solution is expressed in terms of a finite
number of DOF + basis functions

o DOF are the unknown basis function weights, e.g.

K
u(x, t) ~ fi(x Z it(xx, t)Ni(x
k=1

o When using nodal elements, the DOF are characterized by
the value(s) of a function at the nodes of each element

o #unknowns = # DOF
o Function can be it and/or i’
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Finite Elements in Higher Dimensions

o 1-D: elements of finite interval

0 2-D: elements of finite area (e.g. rectangles, triangles,
curvilinear polygons)

o 3-D: elements of finite volumes (e.g. cubes, tetrahedra)

o All finite elements are transformations of reference
elements (e.g. square, triangle, cube)

Figure: Example 2-D FEM mesh using triangles
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Discontinuous Galerkin Background

o State-of-art for solution of hyperbolic partial differential
equations

o First introduced by Reed and Hill for steady-state 2-D
neutron transport in 1973

o Runge-Kutta DG for time-dependent problems by
Cockburn and Shu (1998)

o Finite element space discretization, Runge-Kutta time
discretization

o Widely used in computational fluid dynamics, finding use
in more applications (e.g. atmospheric modeling, MHD)
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Discontinuous Galerkin Solutions

Discontinuous Galerkin schemes use function spaces that allow
discontinuities across cell boundaries.

A Piecewise Linear Function A Piecewise Quadratic Function

Figure: The best L? fit of x* + sin(5x) (green) with piecewise linear (left)
and quadratic (right) basis functions.
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Discontinuous Galerkin Features

o Numerical solution is discontinuous between elements

o Hybrid approach: exploit merits of classical finite element
and finite volume methods
o FV:slope limiters to control spurious oscillations, locality
o FE: high-order accuracy, complex geometries

o Information only needs to be shared between neighboring
elements—adapts well to massively parallel architectures

DG combined with FV schemes can lead to best-in-class explicit
algorithms for hyperbolic PDEs.
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Finite Elements in DG

o Finite elements are non-overlapping

o Basis functions are zero outside the element

o Solution within an element defined only in terms of that
element’s basis functions and DOF

K

u(x, ) ~ ii(x, t) = Z fi(xg, )N (%)

k=1
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Finite Element Spaces

o Set of all functions that can be written as linear
combinations of the basis functions

o Specified for each degree and dimension by:

@ Element shape (e.g. triangle, quadrilateral, hexahedron, etc.)
@ Set of basis functions that span the function space

o #basis functions per element = # DOF per element
o (Nodal only): DOF on each face of dimension d (vertex, edge,
interior)
o Example finite element spaces:
o Lagrange (CY)
o Serendipity (C°)
o Hermite Cubic (C!)
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Lagrange Family

o Basis functions are tensor products of Lagrange
polynomials

e = [[==5 Ntoy) = LEW)

i=0 k i
i#k
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Figure: Basis functions for 2nd (right) and 3rd (left) order elements.
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Lagrange Family

o Pros: Easy to implement, generalizes to arbitrary dimension
and order
o Cons: Large number of DOF in higher dimension and order
o In5-D, need (3 + 1)° = 1024 DOF per element for 3rd order
o Large number of terms above those needed for complete
expansion present!

N
avay

X2y2 3
/ /}34\“/\ \
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Fig. 4.8 Terms generated by a lagrangian expansion of order 3 x 3 (or m x n). Complete polynomials of
order 3 (or n).

Image from The Finite Element Method: Its Basis and Fundamentals
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Serendipity Family

o Basis functions originally derived by inspection
(‘serendipity”)
o Fewer interior nodes compared to Lagrange element of
same order
o Fewer DOF per element
o Smaller dimension function space

o Expect lower accuracy, but faster than Lagrange elements of
the same order

Key Question

Can serendipity elements deliver the same error at a lower
computational cost (by choice of element size and order)?
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Lagrange and Serendipity Compared in 2-D
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Fig. 4.8 Terms generated by a lagrangian expansion of order 3 x 3 (or m x n). Complete polynomials of

order 3 (or n).
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Fig. 4.12 Terms generated by edge shape functions in serendipity-type elements (3 x 3 and m x m).

Image from The Finite Element Method: Its Basis and Fundamentals
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Lagrange and Serendipity Compared in 2-D

IERERHEyTH

Figure: Node placement of 1st to 4th order Lagrange elements.

IR

Figure: Node placement of 1st to 4th order Serendipity elements.
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Larger savings in higher dimensions and

order
Three Dimensions

Order | Lagrange Serendipity
1 8 8
2 27 20
3 64 32
4 125 50

Five Dimensions

Order | Lagrange Serendipity
1 32 32
7 243 112 Figure:. 3Fd order .
3 1024 192 Serendipity element in 3-D
4 3125 352
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Serendipity Family Definition

o Typically used with low order (r<3) in 2-D and to a lesser
extent in 3-D

o Pattern for progression to higher orders, higher dimensions
not evident (‘serendipity’)

o Simple and new dimension-independent definition given
by Arnold! for serendipity elements

Definition

The serendipity space S,(I") is the space of all polynomials in n
variables with superlinear degree (total degree with respect to
variables entering at least quadratically) at most r.

serendipity.
Eric Shi High-Order Serendipity Elements Graduate Seminar Talk 26/1



Example: Degree 3 Polynomial Spaces (2-D)

P,(I") :=span{monomials in n variables with degree < r}
S:(I") :=span{monomials in n variables with superlinear degree < r}

Q,(I") :=span{monomials in n variables with each variable degree < r}

P5(I%) = spanfl, x,y, 2, y*, xy,x°, >, Xy, xy*}
S5(1%) = P5(I?) U span{x’y, xy°}
Qs(1%) = S3(I%) U span{x?y?, x°v2, 2%, x°y°)

o Note that P.(I") c S,(I") c Q.(I")
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Example: S,(I?) Basis Functions

No
N,
N,
N3
N,
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N
N;
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Figure: Sy(I?) element
centered at origin
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Generating Serendipity Basis Functions

@ Given an order and dimension, determine the monomials vy
that span the serendipity space

@ Determine location of nodes xj on reference element
@ Set up matrix equation for basis functions

N = Y o)

k
Ni(xx) = Oy
@ Solve system for weights c;k) by a matrix inversion

@ Map reference space basis functions to physical space
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3-D Gaussian Pulse Advection

o Advection at constant speed in 3-D

of
E +V- (fu) =0
o Solution is given by

f(x,t) = fo(x — ut)

o Periodic boundary conditions
o Design simulation to end when pulse has completed one
period of its motion
o Compute error per node by summing over all nodes in
domain:
N lalty, %) — ko, )]

k= Z‘ Nodes

k
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Convergence Study

o Order of serendipity element and total number of elements
varied (n X n x n forn = 4,8,16,32)

o Since error E scales as O(h¢) with element size h, plot log E
vs. log h and find slope of best-fit line

Order of Element | Order of Scheme (S) | Order of Scheme (L)
1 2.09 2.09
2 3.30 3.20
3 3.85 4.31
4 4.40 5.13
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Error vs. Element Size

Error

Serendipity 1

---Lagrange 4

Lagrange 1
——Serendipity 2
-+-Lagrange 2
——Serendipity 3
-+-Lagrange 3
——Serendipity 4}

Eric Shi

High-Order Serendipity Elements

107"
Element Size
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Computation Time

o Execution time results for a 32 X 32 X 32 element grid:
Order of Element | Serendipity | Lagrange | Ratio

1 73.2s 732s 1.00
2 220's 663 s 0.331
3 654 s 5350s | 0.122

o DOF per element comparison:
Order of Element | Serendipity | Lagrange | Ratio

1 8 8 1.00
2 20 27 0.741
3 32 64 0.500

Additional savings due to larger permissible time step for
serendipity elements
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Error vs. Computation Time

Serendipity 1
Lagrange 1

Eric Shi

10 10 10’ 10
Time (s)
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Error vs. Computation Time
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Error vs. Computation Time
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Error vs. Computation Time
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Conclusions

Initial results indicate that:

o Serendipity elements are more efficient than Lagrange
elements for obtaining the same level of error

o Additional savings in computational time from larger
maximum permissible time step for convergence (CFL
condition)
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Future Work

o Investigate performance of serendipity elements in
multi-block structured grids

o Use serendipity elements in 1D2V simulations
o Scrape-off layer model

o Add full Lenard-Bernstein collision operator
o Extend serendipity elements in Gkeyll to 4-D and 5-D

o Investigate Maxwellian-weighted basis functions for
velocity space discretization
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Caveats

o Reference element in results was mapped to the physical
space by scaling each dimension by a constant

o This is an example of an affine map

o Unfortunately, serendipity elements do .
not attain the same optimal rate of ) O
convergence on non-affine meshes

o Can avoid this problem by defining basis functions in
physical space
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