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Major Motivations

Edge region is important, but complicated
Tokamak edge physics relatively unexplored: no complete
model of self-consistent cross-field transport in open-field
line region, very little study of neutral transport, wall
effects, etc.
Large density/amplitude variations, large relative banana
width, wide range of collisionalities
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Major Motivations

Need comprehensive simulations of edge turbulence
because predicted fusion performance strongly dependent
on edge temperature

ELM suppression/mitigation, spontaneous flow, Li walls

Need new code or major extensions to existing codes to
handle edge region
Advanced algorithms can help with these additional
challenges
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Gkeyll Overview

Prototype code to explore advanced
algorithms for continuum edge
gyrokinetic simulation (e.g. edge
plasma turbulence)

Hybrid discontinuous/continuous
Galerkin methods augmented with
reconstruction techniques from finite
volume schemes

Main code is written in C++

Lua scripts for simulations

Goal
A robust code capable of running very quickly at coarse velocity
space resolution while preserving all conservation laws of
gyro-fluid/fluid equations and giving fairly good results.
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Objective

Explore basis functions that reduce computational effort, yet
retain the formal high-order accuracy for 4-D/5-D gyrokinetic
simulations

1024 unknowns per element using standard 3rd order
element in 5-D
Investigate serendipity basis functions
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Hyperbolic PDEs

Conservation laws

∂Q
∂t

+ ∇ · F(Q) = ψ(Q)

Wave equations
Euler equations
Navier-Stokes equations
Two-Fluid MHD
Vlasov Equation
Hasegawa-Wakatani
equations
Gyrokinetic equations
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Finite Element Methods

Technique for solving systems of PDEs
Example: Consider a differential equation with the exact
solution in blue
Seek approximate solution (red) as a sum of piecewise
linear functions
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Finite Element Methods
Partition solution domain into elements of simple
geometrical shape (mesh)

Each element contains a number of nodes
Use finite element analysis to find the ‘optimal’ linear
combination of basis functions for approximate solution

u(x) ≈ ũ(x) =

K∑
k=1

wkNk(x), Nk(xj) = δkj

The Nk(x) (blue) are basis functions, xk are nodes
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Finite Element Methods

Due to basis function properties, approximate solution can
be expressed in terms of the function values at the nodes

u(x) ≈ ũ(x) =

K∑
k=1

ũ(xk)Nk(x), Nk(xj) = δkj

Solve K algebraic equations to find unknown weights
wk = ũ(xk, t)
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Finite Element Methods

Nodal basis functions Nk(x) evaluate to 1 at node xk and 0 at
every xj,k

There is flexibility in choosing basis functions–don’t need to
use tent functions
Two strategies for increasing accuracy:

Use smaller elements (more elements to discretize domain)
Use basis functions composed of higher degree polynomials

Cost of using higher-degree basis functions is more degrees
of freedom (unknowns) per element

Use higher-degree basis functions with larger elements?
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Polynomial Completeness

If basis functions span a complete Nth degree polynomial
and finite elements have length h, error behaves as

||u − ũ|| ≤ ChN+1

Useful to recall Pascal triangle:

110 ‘Standard’ and ‘hierarchical’ element shape functions
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Fig. 4.4 Normal coordinates for a rectangle.

in x corresponded closely to the exact solution would a higher order of convergence occur,
and for this reason elements with such ‘preferential’ directions should be restricted to spe-
cial use, e.g., in narrow beams or strips. Usually, we will seek element expansions which
possess the highest order of a complete polynomial for a minimum of degrees of freedom.
In this context it is useful to recall the Pascal triangle (Fig. 4.5) from which the number
of terms occurring in a polynomial in two variables x, y can be readily ascertained. For
instance, first-order polynomials require three terms, second order require six terms, third
order require ten terms, etc.

4.5 Rectangular elements – Lagrange family

Consider the element shown in Fig. 4.6 in which a series of nodes, external and internal, is
placed on a regular grid. It is required to determine a shape function for the point indicated
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Fig. 4.5 The Pascal triangle. (Cubic expansion shaded – 10 terms.)
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Degrees of Freedom (DOF)

In the FEM, solution is expressed in terms of a finite
number of DOF + basis functions
DOF are the unknown basis function weights, e.g.

u(x, t) ≈ ũ(x, t) =

K∑
k=1

ũ(xk, t)Nk(x)

When using nodal elements, the DOF are characterized by
the value(s) of a function at the nodes of each element

# unknowns = # DOF
Function can be ũ and/or ũ′
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Finite Elements in Higher Dimensions
1-D: elements of finite interval
2-D: elements of finite area (e.g. rectangles, triangles,
curvilinear polygons)
3-D: elements of finite volumes (e.g. cubes, tetrahedra)
All finite elements are transformations of reference
elements (e.g. square, triangle, cube)

Figure: Example 2-D FEM mesh using triangles
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Discontinuous Galerkin Background

State-of-art for solution of hyperbolic partial differential
equations
First introduced by Reed and Hill for steady-state 2-D
neutron transport in 1973
Runge-Kutta DG for time-dependent problems by
Cockburn and Shu (1998)

Finite element space discretization, Runge-Kutta time
discretization

Widely used in computational fluid dynamics, finding use
in more applications (e.g. atmospheric modeling, MHD)
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Discontinuous Galerkin Solutions
Discontinuous Galerkin schemes use function spaces that allow
discontinuities across cell boundaries.

Figure: The best L2 fit of x4 + sin(5x) (green) with piecewise linear (left)
and quadratic (right) basis functions.
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Discontinuous Galerkin Features

Numerical solution is discontinuous between elements
Hybrid approach: exploit merits of classical finite element
and finite volume methods

FV: slope limiters to control spurious oscillations, locality
FE: high-order accuracy, complex geometries

Information only needs to be shared between neighboring
elements–adapts well to massively parallel architectures

DG combined with FV schemes can lead to best-in-class explicit
algorithms for hyperbolic PDEs.
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Finite Elements in DG

Finite elements are non-overlapping
Basis functions are zero outside the element
Solution within an element defined only in terms of that
element’s basis functions and DOF

u(x, t) ≈ ũ(x, t) =

K∑
k=1

ũ(xk, t)Nk(x)
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Finite Element Spaces

Set of all functions that can be written as linear
combinations of the basis functions
Specified for each degree and dimension by:

1 Element shape (e.g. triangle, quadrilateral, hexahedron, etc.)
2 Set of basis functions that span the function space

# basis functions per element = # DOF per element
(Nodal only): DOF on each face of dimension d (vertex, edge,
interior)

Example finite element spaces:
Lagrange (C0)
Serendipity (C0)
Hermite Cubic (C1)
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Lagrange Family
Basis functions are tensor products of Lagrange
polynomials

`n
k (x) =

n∏
i=0
i,k

x − xi

xk − xi
, Na(x, y) ≡ ln

a (x)lm
a (y)
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Figure: Basis functions for 2nd (right) and 3rd (left) order elements.
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Lagrange Family

Pros: Easy to implement, generalizes to arbitrary dimension
and order
Cons: Large number of DOF in higher dimension and order

In 5-D, need (3 + 1)5 = 1024 DOF per element for 3rd order
Large number of terms above those needed for complete
expansion present!

112 ‘Standard’ and ‘hierarchical’ element shape functions

(a) (b)

(c)

Fig. 4.7 Three elements of the Lagrange family: (a) linear, (b) quadratic, (c) cubic.

Na = 1
4 (1 + ξaξ)(1 + ηaη) (4.20)

in which ξa , ηa are the normalized coordinates at node a.
Indeed, if we examine the polynomial terms present in a situation where n = m we

observe in Fig. 4.8, based on the Pascal triangle, that a large number of polynomial terms is
present above those needed for a complete expansion.7 However, when mapping of shape
functions is considered (viz. Chapter 5) some advantages occur for this family.

4.6 Rectangular elements – ‘serendipity’ family

It is often more efficient to make the functions dependent on nodal values placed on the
element boundary. Consider, for instance, the first three elements of Fig. 4.9. In each a
progressively increasing and equal number of nodes are placed on the element boundary.
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Fig. 4.8 Terms generated by a lagrangian expansion of order 3 × 3 (or m × n). Complete polynomials of
order 3 (or n).
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Serendipity Family

Basis functions originally derived by inspection
(‘serendipity’)
Fewer interior nodes compared to Lagrange element of
same order

Fewer DOF per element
Smaller dimension function space

Expect lower accuracy, but faster than Lagrange elements of
the same order

Key Question
Can serendipity elements deliver the same error at a lower
computational cost (by choice of element size and order)?
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Lagrange and Serendipity Compared in 2-D

112 ‘Standard’ and ‘hierarchical’ element shape functions
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Fig. 4.7 Three elements of the Lagrange family: (a) linear, (b) quadratic, (c) cubic.

Na = 1
4 (1 + ξaξ)(1 + ηaη) (4.20)

in which ξa , ηa are the normalized coordinates at node a.
Indeed, if we examine the polynomial terms present in a situation where n = m we

observe in Fig. 4.8, based on the Pascal triangle, that a large number of polynomial terms is
present above those needed for a complete expansion.7 However, when mapping of shape
functions is considered (viz. Chapter 5) some advantages occur for this family.

4.6 Rectangular elements – ‘serendipity’ family

It is often more efficient to make the functions dependent on nodal values placed on the
element boundary. Consider, for instance, the first three elements of Fig. 4.9. In each a
progressively increasing and equal number of nodes are placed on the element boundary.
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Fig. 4.8 Terms generated by a lagrangian expansion of order 3 × 3 (or m × n). Complete polynomials of
order 3 (or n).

116 ‘Standard’ and ‘hierarchical’ element shape functions
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Fig. 4.12 Terms generated by edge shape functions in serendipity-type elements (3 × 3 and m × m).

polynomial expansion. Figure 4.12 shows this for a cubic element where only two surplus
terms arise (as compared with six surplus terms in a lagrangian of the same degree). How-
ever, when mapping to general quadrilateral shape is introduced (Chapter 5) some of these
advantages are lost rendering the lagrangian form of interpolation advantageous.

It is immediately evident, however, that the functions generated by nodes placed only
along the edges will not generate complete polynomials beyond cubic order. For higher
order ones it is necessary to supplement the expansion by internal nodes or by the use of
‘nodeless’ variables which contain appropriate polynomial terms. For example, in the next,
quartic, member9 of this family a central node is added [viz. Fig. 4.9(d)] so that all terms
of a complete fourth-order expansion will be available. This central node adds a shape
function (1 − ξ 2)(1 − η2) which is zero on all outer boundaries and coincides with the
internal function used in the quadratic lagrangian element. Once interior nodes are added it
is necessary to modify the corner and mid-side shape functions to preserve the Kronnecker
delta property (4.23d).

4.7 Triangular element family

The advantage of an arbitrary triangular shape in approximating to any boundary configu-
ration has been amply demonstrated in earlier chapters. Its apparent superiority here over
rectangular shapes needs no further discussion. However, the question of generating more
elaborate higher order elements needs to be further developed.

Consider a series of triangles generated on a pattern indicated in Fig. 4.13. The number
of nodes in each member of the family is now such that a complete polynomial expansion,
of the order needed for interelement compatibility, is ensured. This follows by comparison
with the Pascal triangle of Fig. 4.5 in which we see the number of nodes coincides exactly
with the number of polynomial terms required. This particular feature puts the triangle
family in a special, privileged position, in which the inverse of the C matrices of Eq. (4.11)
will always exist.3 However, once again a direct generation of shape functions will be
preferred – and indeed will be shown to be particularly easy.

Before proceeding further it is useful to define a special set of normalized coordinates
for a triangle.
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Lagrange and Serendipity Compared in 2-D

Figure: Node placement of 1st to 4th order Lagrange elements.

Figure: Node placement of 1st to 4th order Serendipity elements.
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Larger savings in higher dimensions and
order

Three Dimensions
Order Lagrange Serendipity

1 8 8
2 27 20
3 64 32
4 125 50

Five Dimensions
Order Lagrange Serendipity

1 32 32
2 243 112
3 1024 192
4 3125 352

Figure: 3rd order
Serendipity element in 3-D
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Serendipity Family Definition

Typically used with low order (r<3) in 2-D and to a lesser
extent in 3-D
Pattern for progression to higher orders, higher dimensions
not evident (‘serendipity’)
Simple and new dimension-independent definition given
by Arnold1 for serendipity elements

Definition
The serendipity space Sr(In) is the space of all polynomials in n
variables with superlinear degree (total degree with respect to
variables entering at least quadratically) at most r.

1serendipity.
Eric Shi High-Order Serendipity Elements Graduate Seminar Talk 26 / 1



Example: Degree 3 Polynomial Spaces (2-D)

Pr(In) :=span{monomials in n variables with degree ≤ r}
Sr(In) :=span{monomials in n variables with superlinear degree ≤ r}
Qr(In) :=span{monomials in n variables with each variable degree ≤ r}

P3(I2) = span{1, x, y, x2, y2, xy, x3, y3, x2y, xy2
}

S3(I2) = P3(I2) ∪ span{x3y, xy3
}

Q3(I2) = S3(I2) ∪ span{x2y2, x3y2, x2y3, x3y3
}

Note that Pr(In) ⊂ Sr(In) ⊂ Qr(In)
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Example: S2(I2) Basis Functions
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Figure: S2(I2) element
centered at origin
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Generating Serendipity Basis Functions

1 Given an order and dimension, determine the monomials vk

that span the serendipity space
2 Determine location of nodes xk on reference element
3 Set up matrix equation for basis functions

Nj(x) =
∑

k

c(k)
j vk(x)

Nj(xk) = δkj

4 Solve system for weights c(k)
j by a matrix inversion

5 Map reference space basis functions to physical space
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3-D Gaussian Pulse Advection

Advection at constant speed in 3-D

∂f
∂t

+ ∇ ·
(
f u

)
= 0

Solution is given by

f (x, t) = f0(x − ut)

Periodic boundary conditions
Design simulation to end when pulse has completed one
period of its motion
Compute error per node by summing over all nodes in
domain:

E =

Nnodes∑
k

|u(tf , ~xk) − u(t0, ~xk)|
Nnodes
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Convergence Study

Order of serendipity element and total number of elements
varied (n × n × n for n = 4, 8, 16, 32)
Since error E scales as O(hc) with element size h, plot log E
vs. log h and find slope of best-fit line

Order of Element Order of Scheme (S) Order of Scheme (L)
1 2.09 2.09
2 3.30 3.20
3 3.85 4.31
4 4.40 5.13
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Error vs. Element Size
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Computation Time

Execution time results for a 32 × 32 × 32 element grid:
Order of Element Serendipity Lagrange Ratio

1 73.2 s 73.2 s 1.00
2 220 s 663 s 0.331
3 654 s 5350 s 0.122

DOF per element comparison:
Order of Element Serendipity Lagrange Ratio

1 8 8 1.00
2 20 27 0.741
3 32 64 0.500

Additional savings due to larger permissible time step for
serendipity elements
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Error vs. Computation Time
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Error vs. Computation Time
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Error vs. Computation Time
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Error vs. Computation Time
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Conclusions

Initial results indicate that:
Serendipity elements are more efficient than Lagrange
elements for obtaining the same level of error
Additional savings in computational time from larger
maximum permissible time step for convergence (CFL
condition)
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Future Work

Investigate performance of serendipity elements in
multi-block structured grids
Use serendipity elements in 1D2V simulations

Scrape-off layer model

Add full Lenard-Bernstein collision operator
Extend serendipity elements in Gkeyll to 4-D and 5-D
Investigate Maxwellian-weighted basis functions for
velocity space discretization
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Caveats

Reference element in results was mapped to the physical
space by scaling each dimension by a constant

This is an example of an affine map

Unfortunately, serendipity elements do
not attain the same optimal rate of
convergence on non-affine meshes

Can avoid this problem by defining basis functions in
physical space
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