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In this document I list the eigensystem of the Euler equations. The for-
mulas are taken from[1], Chapter 3, section 3.1. The Euler equations can
be written in conservative form as
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is the total energy and ε is the internal energy of the fluid and q2 = u2 +
v2 + w2. The pressure is given by an equation of state (EOS) p = p(ε, ρ).
For an ideal gas the EOS is p = (γ − 1)ρε.

The eigenvalues are {u − c, u, u, u, u + c}. The right eigenvectors of the
flux Jacobian are given by
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here
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is the enthalpy and the sound speed respectively. Also,
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Note that for ideal gas EOS we have
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and b = γ − 1. Hence, in this case the term h− c2/b in Eq. (9) is just q2/2.
The left eigenvectors are
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which, for an ideal gas EOS reduces to q2/2.
Now consider the problem of splitting a jump vector ∆ ≡ [δ0, δ1, δ2, δ3, δ4]T

into coefficients neeeded in computing the Riemann problem. The coeffi-
cients are given by L∆. For an ideal gas law EOS, after some algebra we
can show that an efficient way to compute these are
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α1 = −vδ0 + δ2 (12)
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α0 = δ0 − α3 − α4. (15)
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