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In this document I outline the MUSCL-Hancock scheme for the solution of 1D hyperbolic partial
differential equations. This scheme is a predictor-corrector scheme and is second order accurate in
both space and time. We start from the system of hyperbolic equations

∂Q

∂t
+
∂F

∂x
= 0 (1)

where Q(x, t) is a vector of m conserved quantities and F = F (Q) are fluxes. In the following
we denote the flux Jacobian as A ≡ ∂F/∂Q and the eigenvalues as λp and the right- and left-
eigenvectors as rp (column vector) and lp (row vector), for p = 1, . . . ,m, respectively.

We will also assume (though this is not required) that the system can be put into the non-
conservative (“primitive”) quasi-linear form

∂V

∂t
+Ap

∂V

∂x
= 0 (2)

where V (x, t) are a vector of m primitive quantities and Ap(V ) is a m×m matrix. Note that any
invertible transform Q = ϕ(V ) will transform Eq. (1) into Eq. (2).

1. The basic algorithm

The essential idea of the MUSCL-Hancock scheme is to use cell averages to predict the values
of the conserved (or primitive) quantities at cell edges at t + ∆t/2 and then use these predicted
values to update the solution to t+ ∆t. The steps in the algorithm are as follows.

(1) Given cell averages reconstruct a (possibly limited) linear representation of the variables in-
side each cell. This can be done for either the conserved variables or the primitive variables.
Hence, in each cell we represent the solution as

W (x, t) = Wi +
x− xi

∆x
δWi (3)

for xi−1/2 < x < xi+1/2 and where xi ≡ (xi+1/2 + xi−1/2)/2, ∆x ≡ xi+1/2 − xi−1/2 and δWi

are the reconstructed slopes. In Eq. (3)W (x, t) stands for the variables we are reconstructing
(either primitive or conserved variables). To determine the slopes we can use an averaging
procedure

δWi = ave(Wi −Wi−1,Wi+1 −Wi) (4)

where ave(a, b) is a suitable “averaging” function, applied to each component of the vector.
Note that using the standard average ave(a, b) = (a + b)/2 leads to a central-difference
computed slope, while ave(a, b) = 0 leads to a zero slope or a first-order representation in
each cell. Other forms of the average function can be used to avoid spurious oscillations
around discontinuities and prevent the formation of unphysical states. See the next section
for more details on the reconstruction and averaging steps.

(2) Use the slopes to predict the solution at half time-step, ∆t/2. If the primitive variable
slopes have been determined then use the update formula

Ṽj = Vj −
∆t

2∆x
Ap(Vi)δVi (5)
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If the conserved variable slopes have been determined then use the update formula

Q̃j = Qj −
∆t

2∆x
A(Qi)δQi (6)

In these formulas Ṽj and Q̃j denote the predicted values in cell Ci.
(3) Use the predicted solution to compute the predicted values at cell edges. As the solution is

assumed to be linear, the edge values are

W+
i−1/2 = W̃i − δWi/2 (7)

W−
i+1/2 = W̃i + δWi/2 (8)

Note that we are using the predicted solution at t + ∆t/2 but the slopes at t to compute
the edge values. This gives the edge values at t+ ∆t/2 to O(∆t2).

(4) Use the edge values in a Reimann solver (a numerical flux) to update the conserved variables
to time t

Qn+1
i = Qn

i −
∆t

∆x
(Fi+1/2 − Fi+1/2) (9)

where Fi±1/2 are the numerical fluxes computed from the predicted edge values:

Fi−1/2 ≡ F (W−
i−1/2,W

+
i−1/2). (10)

See the last section for details on numerical fluxes that can be used in Eq. (9).

2. Reconstruction and limiting

It is simplest to reconstruct each of the conserved variables or the primitive variables directly.
This procedure is called component reconstruction and limiting. However, a better approach that
results in smoother solutions is to limit the characteristic variables instead. In this case the limiting
is done after projecting the differences on left eigenvectors of the flux Jacobian. Let L(Q) be the
matrix of left eigenvectors arranged as rows and let R(Q) be the matrix of right eigenvectors
arranged as columns. Note that L = R−1. Then the reconstruction becomes, instead of Eq. (4),

δWi = R(Qi) ave(∆i
i−1,∆

i
i) (11)

where ∆j
i = L(Qj)(Wi+1−Wi). If the averaging function is non-linear then even for a linear system

of the equations the characteristic limiting and component limiting do not coincide.
There are several possible averaging function one can use (besides the zero and simple-averages).

For example, the following choices are all designed to avoid unphysical oscillations around discon-
tinuities

• Minmod limiting

ave(a, b) =

{
minmod((a+ b)/2, 2a, 2b) if ab > 0

0 if ab ≤ 0
(12)

• Supebee limiting

ave(a, b) =

{
minmod (maxmod(a, b),minmod(2a, 2b)) if ab > 0

0 if ab ≤ 0
(13)

• Epsilon limiting

ave(a, b) =
(b2 + ε2)a+ (a2 + ε2)b

a2 + b2 + 2ε2
(14)

where ε2 ∼ ∆x3 is a parameter.
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In the above expressions the mimod(a0, a1, . . .) function is defined as

minmod(a0, a1, . . .) =


min(a0, a1, . . .) if ai > 0, for all i = 0, 1, . . .

max(a0, a1, . . .) if ai < 0, for all i = 0, 1, . . .

0 otherwise

(15)

None of the above reconstructions (except the zero-average) ensures that invariant domains are
preserved. Another way to put it is that unless something special is done the scheme may not be
positivity preserving. For example, while solving the Euler equations the predicted edge values of
density and pressure may become negative, leading to unphysical states. A simple but crude way
to fix this is to set slopes of all quantities in a cell to zero if any of the values at either cell edge
becomes negative. More nuanced methods can also be develop by self-consistently1 adjusting the
slopes just enough to ensure invariant domains are preserved.

3. Numerical fluxes

A wide variety of numerical fluxes can be used to compute the edge fluxes needed in Eq. (9).
It is important to use a numerical flux that preserves positivity. This combined with a positivity
preserving reconstruction will ensure, under a suitable CFL condition, the positivity of the complete
scheme.

The simplest numerical flux to use is the local Lax flux (also called the Rusanov flux). This is
given by

F (Q−, Q+) =
F (Q−) + F (Q+)

2
− cQ

+ −Q−

2
(16)

Here c > 0 is a parameter given by

c = sup
Q=Q−,Q+

sup
p
|λp|. (17)

In other words, the parameter c is the maximum of the absolute eigenvalues computed from the
left and right state. Though diffusive, the Lax flux is the simplest in the sense that it requires the
minimum amount of information about the equation system being solved: all one needs (besides
the flux function) is an estimate of the maximum eigenvalue. Note that any c greater than the one
computed by Eq. (17) can be used. More complex numerical flux functions that incorporate more
information about the equation system can also be used. These flux functions can reduce diffusion
as the cost of greater complexity.

1What this means is that if the slopes of density and pressure are adjusted, the complete predicted solution (and
hence the edge values) must be recomputed with the new slopes.


