24. THE TRANSPORT EQUATION IN THE CASE
OF COULOMB INTERACTIONS

A transport equation is derived for a system consisting of charged particles
taking their interactions into account. The order of magnitude of the mean free path
of the particles in such a system is determined. The rate at which the tempera-
tures of the ions and electrons in the plasma become equal is evaluated.

Ix the case of Coulomb interactions there appear, in the formulae for the
kinetic theory of gases, integrals which are divergent when the distances be-
tween the particles are large. This means that an important role is played by
those collisions in which the distances between the colliding particles are large.
But at large distances the particles are only scattered through small angles
with small changes in velocity. Thus collisions in which the velocity vector
is only slightly changed are important.

Let n (p;) be the distribution function in momentum space. It is a function
of the three components of the momentum of the particle (i = z, y, z). The
change in the momentum during a collision we shall denote by A; where 4; < p;
in all the collisions. Further, let d W be the probability (per unit time) of a
collision between particles with momentum p; and a particle with momen-
tum p;, such that p; is changed to p; + 4; and p; to p; + A;. Because of
momentum conservation 4, = — 4;. We shall not, however, use this fact for
the moment, in order that we may obtain formulae which are valid in the
general case. The number of such collisions will then be

dW n(p) n'(p')

(for simplicity we shall omit the indices on p; and 4; in »n(p;) and so on).
The number of collisions changing particle momenta p; + 4; and p; + 4;
back to p; and p; will equal

dWn(p + A)n(p’ + 4'),

since according to the Liouville theorem the probabilities of forward and reverse
transitions are equal.

Let us express the probability d W as a function of the half-sum and half-
difference of the momenta in the initial and final states. Then the probability
of a forward transition will be

aw 4 A a4, A’
p+23p+ 2’ E] >

JI. IT. JJampay, Kuanernueckoe ypaBHeHMe B ciydyae KYJOHOBCKOTO B3amMofeiictsus, JRypuas
Axenepumenmansnoti u Teopemuuneckoti Qusuru, 7, 203 (1937).

L. Landau, Die kinetische Gleichung fir den Fall Coulombscher Wechselwirkung, Phys. Z.
Sowjet. 10, 154 (1936).

6* 163



164 COLLECTED PAPERS OF L. D. LANDAU

and for the reverse transition
A A’
dW ] ! — _A N '—AI .
(p + 2 P 2 )

Since these probabilities are equal, d W(p, p', 4, 4') is an even function of
A; and A4;.

Hence the number of particles with momentum p; is changed, due to colli-
sions, in unit time by

A A
de<P +5 Pt 4 A’){n(p) ' (p') —n(p + A)n'(p' + 4}

The probability d W we write in the form

’

V|
dW—w<p+ , P+ ,A, A’)dr’drA,
where dt' = dp, dp, dp, and d7, is the product of the differentials of the
parameters which define the collision.
Thus the change in the number of particles with momentum p; is:

’

4 4
fdr' dr,jw(p Ll ] A'){n(p) W) = np+ w4,
e

Let us expand the expression under the integral in a series in powers of
A; and A; (o should of course be expanded only with respect to 4;, appearing
in p; + 4;/2 and p; + 4;/2). The zero order terms cancel each other and the
terms of the first order are

a 7
—dvde, [wn —= 4, +wnan 4:),
api ap;

where w = w(p, p’, 4, 4') (summation is everywhere implied over indices
which are repeated twice). But w is an even function of 4; and 4;. Therefore
the integral written above is equal to zero.

The second order terms are the following
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Let us integrate two of these terms by parts over dz’, namely:
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Since the integration is performed over the whole of p’ space, the surface
integral is equal to zero, because n’ = 0 at infinity.
As a result the second-order terms give

J‘d > {A,- 4, , *n N 4,4, on an'}
- v dr,w n -
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This can be re-written in the form

0 a4, 4 0 A, 4, on'
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Thus the integral (1), defining the change due to collisions in the number of
particles with given momentum is expressed, as it should be, as the divergence
4 4;/@ p; in momentum space, of the flow vector §; in momentum space. The
components of this flow equal

A; 4 0 A4; A, on'
ji= - dT'dTA’LU kn’ " + l'n " .
2 § 8 2 op;

As was already noted at the beginning, A4; = — A;. Therefore in our case the

flow is
on' 5] A; A
% =fdr’ dr, {(n (zn’ — 0~ n)J‘ k wdrA}.
0P 0P 2

If the system consists of different types of particles, then the flow §; for a
given type of particle is equal to

on’ 0 4; 4
=Y 1dviln L - n " deTA, (3)
o 0P 2

where the summation is performed over all the kinds of particles in the system,
unprimed variables being related to the given type of particle and primed
variables to each type of particle in turn (in this number, of course, is included
the given type).

Let us apply the formulae thus obtained to the case of a system of particles
with Coulomb interactions, which we are considering. For this system let
us determine the change in the momenta of two particles with charges, ¢ and
¢’ and momenta p; and p; moving at some distance from one another. Let p
be the impact parameter, i.e. the distance at which the two particles would
pass each other if there were no interaction between them, and u, their relative
velocity. Let us consider this collision in the co-ordinate system in which the
particle e’ is at rest, with the z-axis along the direction of motion of the particle
e, which has velocity . We consider the scattering angle to be small. Because
of this the momentum along the x-axis does not change to this approximation,
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and only the momentum in a direction perpendicular to the z-axis (along the
y-axis) changes. This change equals

+ o0

0
Ay= j —qut,
Y

- 00

where U = e ¢'/r is the energy of interaction between the particles.

Since the scattering is considered to be small it is possible to consider, in
the integral, that the motion is unperturbed, i.e. directed along the z-axis.
Then

+ o0

y ee odt 2e e
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Going back to an arbitrary co-ordinate system, and noticing that the vector
of the change in momentum is directed along the direction of @; we find

2ee’ g

A’i = (4)

u e
Let us now calculate the integrals

4; 4, d 2e?e'? g;
Kip = 3 wary = u2 94 w dTA:

appearing in (3). n dW = wn’ dv’ d 1, is the number of collisions per unit
time with particles e’, undergone by the particle e with momentum p;, in
which its momentum changes by the given value 4;. In other words this is
the number of collisions in which particles ¢ and e’ pass a definite distance g;
apart, the particles ¢’ having definite momentum p; (4, is completely determined
for given p; and g;). Denote by v; and v; the velocities of the particles e
and ¢'. Their relative velocity u; = »; — v; has absolute value %. The number
of collisions of the particle e which take place at a given distance p; with the
given relative velocity u; is obviously

uodeodeu d,

where ¢ is the angle determining the direction of g; (at the given velocity u; all
the possible @; lie in one plane which is perpendicular to %;; ¢ is the angle in
that plane).

Hence we can change wdzt, to updedg¢ in the integrals «;;

2e2e? [ o; 04
Kip = " j 93 de(p.

In order to perform the integration, introduce, temporarily, co-ordinate
axes with the xz-axis directed along u;. Then g, = 0 since @; 1 u;. Because of



TRANSPORT EQUATION FOR COULOMB INTERACTIONS 167

this o,y = &z = &z, = 0. Also «,, = 0 since the integral of g, 0, = p®sin ¢
cos ¢ over all angles ¢ vanishes.

Thus for «,, and «,,, which are not equal to zero, we find (substituting
0,=psing, g, = p cos ¢ and integrating with respect to d ¢)

[+2
27 e?e'? ﬂ

% e

&

(5)

Oyy = Ozz =

The integral appearing here diverges logarithmically. The divergence at
small p is due to the fact that for small ¢ the scattering angle of the particles
in the collision is large, and hence all the previous formulae are no longer valid.
If the exact formulae are used then there would, of course, be no divergence
(at small p).

Since a logarithm is insensitive to small changes in its argument, we can
take in (5), as the lower limit p,, that value g at which the scattering angle be-
comes of the order of unity, i.e. the interaction energy e e'/p becomes of the
order of the mean kinetic energy & of the particles:

’

ee
&1 E .

As far as the upper limit g, in (5) is concerned, two cases must be distin-
guished. If the total charge on the particles in the system is not equal to zero,
then as the upper limit one must take the linear dimension R of the region in
which these particles lie. In the most interesting case, when the total charge
of the system is zero, the charges are screened and as g, one should take the
Debye—Hiickel screening radius. This radius is 1/» where x is the coefficient
in the screened Coulomb law e"*"/r and is determined by the well-known equation

%2 — Z N 1 67,2 .
kT

Here the summation is taken over all types of particles in the system and N;
is the number of particles of the ith kind in 1 cm3. To an order of magnitude

xx VN e2/kT where N is the number of particles in 1 cm3. But k7 = & so
that x = VN e2/e. Thus we can take for the upper limit in (5),

\/z
0y = [ =—.
? Ne?

Substituting o, and g, in (5) we find

where 1 /38
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Returning now to an arbitrary co-ordinate system we can write, in tensor
form, .
_ 2,2Lu Oip — Uy Up

xp=mete? L —————

Li=k
61:: 2 3
* {0,i=|=k.

b

u®
where

Substituting this expression into (3) we find the flow of particles ¢ in momen-
tum space in the form

on' , an} u? 8y — u; Uy, dv )
7.

ji = me* L e'zf{n -~ —n
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The transport equation in the presence of a temperature gradient and an
external electric field E; has the form

é 0 or 0 0%;

n n g " . j

ot T " om T an  an

ud

=0. (8)

The Maxwellian distribution makes ¢4; zero, as it should do.

It would, in principle, be possible to determine from this equation the elec-
trical and thermal conductivity of the gas consisting of the charged particles.
This, however, meets considerable mathematical difficulties. We restrict
ourselves to a qualitative determination of the conductivities, namely, we
determine, to within an order of magnitude, the mean free path 7 of the
particles, from which it is possible to find the electrical and thermal conduec-
tivities by the use of well-known formulae.

Let N be (to an order of magnitude) the number of particles in 1 cm?,
e the charge of the particles and 7' the temperature of the gas. As is seen from
(7), when it is substituted into (8), N and e appear in the formulae only in the
combination N L e%. Therefore, the mean free path of the particles should be
determined only in terms of the quantities et LN, kT and the mass of the par-
ticles. From these one can construct only one combination having the dimen-
sions of a length, namely (k7')2/(e* LN). To within an order of magnitude the
mean free path will be equal to just this ratio

k2
ALN' )

l =~

This result disagrees with Gabor’s formulae!, which points to the incorrect-
ness of his assumptions.

Let us consider a gas consisting of electrons and ions. Because of the large
difference in masses between the electrons and ions, the exchange of energy
by the electrons amongst themselves and the ions amongst themselves will
take place much more rapidly than the exchange of energy between the elec-
trons and ions (in a collision between a very heavy particle and a very light one,
the energy of each of them is almost unchanged). Because of this the equilib-
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rium in the energies of the electrons amongst themselves and the ions amongst
themselves will be established much sooner than the equilibrium between the
unlike groups. Let us consider that such an equilibrium is already established,
i.e. the electrons and the ions both have a Maxwellian distribution, but the
temperatures of these distributions, 7" and 7T, are different. Let us find the
rate at which the equilibrium between the electrons and ions is established,
i.e. the rate of equalisation of the temperatures 7" and 7.

Let us work out the energy transmitted by the electrons to the ions in unit
time (in 1 em3) by collisions between them. Let ¢, m and ¢’, m’ be the charges
and masses of the ions and electrons and # and #»’ their distributions:

n = N(QT[’I’)’L kT)—;;/ge—e/kT, n = N’ (27'l m’ kT)-—3/2e—e'/kT; (10)

N and N’ are the numbers of ions and electrons in 1 cm? and ¢ and ¢’ are their
energies. The flow of ions in momentum space is, according to (7):

on' 0 20 — W
ji=mete?L||n n, —n Gl Wi s dt’ (11)
op; P u?

(all primed variables correspond to the electrons, unprimed variables to the
ions). In the sum in (7) only one term remains, since the term which corresponds
to the collisions of ions one with another vanishes, because the distribution
of the ions is Maxwellian.

The change per unit time in the number of ions with given momenta due
to collisions with electrons is — 0 5;/@ p;. Thus the change in their energy is

%
——Js ) dz,
op;
or, integrating by parts

dj; 0
-] L dr = ji—gdt= jiv;dT
op; op;

(0 &/ p; = v;). Since the integration is taken over all momentum space, the
surface integral disappears.
Substitute the distributions (10) into (11). We have

on n  de n v on' n' v,
opr kT @ép, kT op, = kT
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and therefore

1 1 2, — 2
7 = 71 €2 ,2L<'7C—T'—ﬁ,->j‘7&n,ﬁ—g—d3(—uiﬂd7df’.

The change in energy, which we are seeking, is then equal to

1 1 207 — )2
“‘?‘i 'Uid'ﬂ = 7 e? 6’2L<-ﬁ —W)J‘Jvnnll@%—ug(ﬁid’tdf’.

Since the mass of the electrons is much less than the mass of the nuclei,
their velocity v; is much larger than the velocity of the ions v;. Because of
this one may consider that ;= v;. Then

2
J.y,v,dr_neﬂ ’2L< kT’)fJnn’ i %) drdz.

Averaging over the angles between »; and v; we find

f;i,-v,-dr:é—neze’zL(le kT’)f vzdrf—dr
Substituting (10) we have:
m' \¥? o
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As a result we find:
J‘ . 2N N'e®e'?(2nm') 2L
v jidr=

m 2 T (T -17).

If there are ions of different types in the gas, the total energy transmitted
by the electrons to the ions per unit time is

2N'e'?2(2n m’)I/ZL N e?
k]/2 T/3I2 T) Z

(2 is over all types of ions).

The energy of the electrons in 1 cm? is equal to 3N’ £7”/2. Dividing the
energy (12), lost by the electrons in unit time, by 3.V’ k/2, we obtain the rate
of change of the electron temperature 7":

(12)

a7 4 22am (T =T Ne?
ar _ 2 f@am) (T-1) p o N (13)
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