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1 Generic moment equations

Each species in a multi-component plasma is described by the Boltzmann equation which describes the
temporal evolution of the particle distribution function in a six dimensional spatial and velocity space and
evolves under the influence of collisions and electromagnetic forces. With the distribution function for
species s, fs(x,v, t), defined such that fs(x,v, t)dxdv is the number of particles in a phase-space volume
element dxdv, the Boltzmann equation may be written as

∂fs

∂t
+ vj

∂fs

∂xj
+

qs
ms

(Ej + εkmjvkBm)
∂fs

∂vj
= Hs (1)

Here E is the electric field, B is the magnetic flux density, qs and ms are the charge and mass of the plasma
species and εkmj is the completely anti-symmetric pseudo-tensor which is defined to be ±1 for even/odd
permutations of (1, 2, 3) and zero otherwise. Summation over repeated indices is assumed. Of course, the
EM fields are determined from Maxwell equations

∂B

∂t
+∇×E = 0 (2)

ε0µ0
∂E

∂t
−∇×B = −µ0J (3)

where the current J is computed from moments of the distribution function

J =
∑
s

∫ ∞
−∞

vfs d3v. (4)

General moment equations can be derived from the Boltzmann equation. To do this we adopt the fol-
lowing definition for the moments

P
(n)
i1i2...in

≡ m
∫ ∞
−∞

ci1ci2 . . . cinfd
3v (5)

and generalized friction from collisions

R
(n)
i1i2...in

≡ m
∫ ∞
−∞

ci1ci2 . . . cinHd3v (6)

Here, the species index is dropped and c ≡ v−u. With this definition, for example, P (0) = mn(x, t), where
n(x, t) is the number density, P (1)

i = 0, P (2)
ij = Pij , where Pij is the pressure tensor and P (3)

ijk = Qijk,
where Qijk is the heat flux tensor, etc.
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The non-conservative form of the general moment equations are as follows. For n = 1 we have

∂tui1 + uj∂jui1 +
1

P (0)
∂jP

(2)
ji1

=
q

m
(Ei1 +Bmukεkmi1) +

1

P (0)
R

(1)
i1
. (7)

For n 6= 1 (including n = 0) we have

∂tP
(n)
i1i2...in

− 1

P (0)
∂jP

(2)
j[i1
P

(n−1)
i2...in]

+ ∂jP
(n+1)
ji1i2...in

+ ∂jujP
(n)
i1i2...in

+ ∂ju[i1P
(n)
i2...in]j

+ uj∂jP
(n)
i1i2...in

=
q

m
Bmεkm[i1P

(n)
i2...in]k

+R
(n)
i1i2...in

− 1

P (0)
R

(1)
[i1
P

(n−1)
i2...in]

(8)

In these equations square brackets around indices represent the minimal sum over permutations of free
indices needed to yield completely symmetric tensors1.

The general conservative form of the moment equations can be derived. For this the following total
velocity moments are defined

P(n)
i1i2...in

≡ m
∫ ∞
−∞

vi1vi2 . . . vinfd
3v (9)

and generalized total velocity friction from collisions

R(n)
i1i2...in

≡ m
∫ ∞
−∞

vi1vi2 . . . vinHd3v (10)

With these the general conservative form of the equations are

∂tP(n)
i1...in

+ ∂jP(n+1)
ji1...in

=
q

m
(E[i1P

(n−1)
i2...in]

+Bmεmj[i1P
(n)
i2...inj]

) +R(n)
i1...in

. (11)

2 Ten- and five-moment equations

We are mostly interested in the equations for the lower moments, in particular, the number density, the
velocity and the pressure tensor. Specializing the general equations we get

∂tn+ uj∂jn+ n∂juj = 0 (12)

∂tui + uj∂jui +
1

mn
∂jPji =

q

m
(Ei + εkmiukBm) (13)

∂tPmn + ∂jQjmn + ∂jujPmn + ∂ju[mPn]j + uj∂jPmn =
q

m
Brεkr[mPn]k. (14)

This is a system of ten equations for each plasma species. To close this system we need a relation to
determine the heat-flux tensor Qijk. For now we will leave this unspecified.

Now write the pressure tensor as a scalar and trace-free part

Pij = pδij + Πij (15)

1For example, u[iEj] = uiEj + ujEi. In general, as the moments are themselves symmetric, one usually only needs to
cyclically permute the free indices and sum to get a symmetric expression.
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where p = Pii/3 and Πii = 0. Substitute this in the above equation and also take the trace of the pressure-
tensor equation to get the five-moment equations

∂tn+ uj∂jn+ n∂juj = 0 (16)

∂tui + uj∂jui +
1

mn
(∂ip+ ∂jΠji) =

q

m
(Ei + εkmiukBm) (17)

∂tp+ uj∂jp+
5

3
p ∂juj +

2

3
Πmj∂jum +

2

3
∂jqj = 0. (18)

This is a system of five equations for each plasma species. To close this system of equation we need to
specify a closure for Πij and the heat-flux vector qj ≡ Qjmm/2. For now, we will leave these unspecified.

A further simplification can be made to the five-moment equations by assuming that the fluid is isother-
mal. With this we can drop the pressure equation and assume the temperature is constant. Note that the
temperature can be further set to zero, i.e. the fluid assumed to be cold.

3 An eigenvalue approach to linear dispersion solvers

Consider a generic system of equations

∂tQ + Aj∂jQ = S(Q) (19)

where Q(x, t) is a vector of variables, Aj(Q) are matrices and S(Q) is the source vector. We will linearize
this around a uniform equilibrium Q0 and write Q = Q0 + Q1 to get the linear system

∂tQ1 + Aj(Q0)∂jQ1 = M(Q0)Q1 (20)

where M(Q) ≡ ∂S/∂Q is the Jacobian of the source terms. Computing the Fourier transform of this in the
standard way we get

−iωQ1 + ikjAj(Q0) = M(Q0)Q1. (21)

Rearranging this we get

[kjAj(Q0) + iM(Q0)− ωI]Q1 = 0. (22)

Hence for non-trivial solutions to the linearized system we need the frequencies ω(k) to be the eigenvalues
of the matrix

D(k,Q0) ≡ kjAj(Q0) + iM(Q0). (23)

For various closures and also for the case when we have an electrostatic problem we need to add additional
terms to the D matrix, but the essential idea of constructing an eigenvalue problem remains the same.

4 The electrostatic limit

For electrostatic problems we have

E = −∇φ (24)
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where φ is the electrostatic potential which is determined from Poisson equation

∇2φ = − 1

ε0

∑
s

qsns. (25)

Hence, in k-space we can eliminate the electric field from the linearized equations by writing

E = − ik

k2ε0

∑
s

qsns (26)

where now ns is the perturbed number density. Note that this has the effect of coupling all species to each
other via the momentum equation through their dependence on the perturbed density of all other species.
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